Skip to main content
Log in

Proton conductivity of nanoporous anatase xerogels prepared by a particulate sol–gel method

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanoporous anatase xerogels were prepared via particulate sol–gel processes. The calcined xerogels were mesoporous, with a BET surface area of 121 m2/g, an average pore diameter of 5.8 nm and a pore volume of 0.236 cc/g. Proton conductivity of the membranes was measured as a function of temperature and relative humidity (RH). When anatase membranes are treated at pH 1.5, the proton conductivity increased in the whole range of temperature and RH. It indicates that the surface site density (number of water molecules per square nanometer) of these materials has a strong effect on conductivity. The proton conductivity of the studied anatase xerogels followed an Arrhenius-like dependence on the temperature (from room temperature to 90°C), in both treated and untreated membranes. A sigmoidal dependence of the conductivity on the RH was observed with the greatest increase noted between 58% and 81% RH in both treated and untreated anatase membranes. The highest value of proton conductivity was found to be 0.015 S/cm at 90°C and 81% RH, for treated anatase ceramic membranes. An increase in the conductivity could be achieved by means of longer times of treatment. According to the activation energy values, proton migration in this kind of materials could be dominated by the Grotthuss mechanism in the whole range of RH. The similar values of proton conductivity, lower cost and higher hydrophilicity of these membranes make them potential substitutes for perfluorosulfonic polymeric membranes in proton exchange membrane fuel cells (PEMFCs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kreuer KD (1997) Solid State Ionics 97:1

    Article  Google Scholar 

  2. Gruger A, Régis A, Schmatko T, Colomban Ph (2001) Vibrational Spectrosc 26:215

    Article  Google Scholar 

  3. Nogami M, Nagao R, Wong C (1998) J Phys Chem B 102:5772

    Article  Google Scholar 

  4. Colomer MT, Anderson MA (2001) J Non Cryst Solids 290:93

    Article  Google Scholar 

  5. Matsuda A, Kanzaki T, Tadanaga K, Tatsumisago M, Minami T (2001) Electrochim Acta 47:939

    Article  Google Scholar 

  6. Anappara AA, Rajeshkumar S, Mukundan P, Warrier PRS, Ghosh S, Warrier KGK (2004) Acta Mater 52:369

    Article  Google Scholar 

  7. Mioc UB, Milonjic SK, Stamenkovic V, Radojevic M, Colomban Ph, Mitrovic MM, Dimitrijevic R (1999) Solid State Ionics 125:417

    Article  Google Scholar 

  8. Mioc UB, Milonjic SK, Malovic D, Stamenkovic V, Colomban Ph, Mitrovic MM, Dimitrijevic R (1997) Solid State Ionics 97:239

    Article  Google Scholar 

  9. Lowell S, Shields JE (1991) Powder surface area and porosity. Chapman and Hall, London

    Google Scholar 

  10. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603

    Google Scholar 

  11. Barret EP, Joyney LG, Halenda PP (1951) J Am Chem Soc 73:373

    Article  Google Scholar 

  12. Seaton NA (1991) Chem Eng Sci 46:1895

    Article  Google Scholar 

  13. Nogami M, Matsushita H, Kasuga T, Hayakawa T (1999) Electrochem Solid State Lett 2:415

    Article  Google Scholar 

  14. Lide DR (ed-in-Chief) (2003–2004) Handbook of chemistry and physics, 84th edn. CRC, Boca Raton

    Google Scholar 

  15. Boukamp B, Equivalent circuit (EQUIVCRT.PAS) (1988–89) University of Twente, Twente

  16. Gregg SJ, Sing KSW (1982) Adsorption, surface area porosity. Academic, London

    Google Scholar 

  17. Vendange V, Colomban Ph (1996) J Porous Mater 3:193

    Article  Google Scholar 

  18. Salame II, Baagrev A, Bandosz TJ (1999) J Phys Chem B 103:3877

    Article  Google Scholar 

  19. McCallum C-L, Bandosz TJ, McGrother SC, Müller EA, Gubbins KE (1996) Langmuir 12:533

    Google Scholar 

  20. Dubinin MM, Serpinsky W (1966) J Colloid Interface Sci 21:378

    Google Scholar 

  21. Colomban P, Novak A (1992) In: Colomban P (ed) Proton conductors. Cambridge University Press, Cambridge, pp 38–55, 384–387

  22. Kreuer KD, Stoll I, Rabenau A (1983) Solid State Ionics 9–10:1061

    Article  Google Scholar 

  23. Zawodzisnki TA Jr, Gottesfeld S (1992) The electrochemical society extended abstracts, Toronto, pp 11–16 (Abstract 94)

  24. Marrink SJ, Berkowitz M, Berendsen HJC (1993) Langmuir 9:3122

    Article  Google Scholar 

  25. Agmon NJ (1996) Chim Phys et de Physiquo Chim Biolog 93:1714

    Google Scholar 

Download references

Acknowledgments

This work is in the frame of the contracts CAM 07N/0102/2002 and CICYT MAT2002-00250.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Colomer.

Additional information

Presented at the conference Solid State Chemistry 2004, September 13–17, Prague, Czech Republic

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colomer, M.T. Proton conductivity of nanoporous anatase xerogels prepared by a particulate sol–gel method. J Solid State Electrochem 10, 54–59 (2006). https://doi.org/10.1007/s10008-005-0662-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0662-x

Keywords

Navigation