Skip to main content
Log in

Binding energy of ruthenium submonolayers deposited on a Pt(111) electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We investigated the 3d5/2 core-level binding energy of Ru in Ru nanoislands spontaneously deposited on a Pt(111) electrode [Pt(111)/Ru], and the binding energies of 3d5/2 iodine and 1s CO adsorbed on Pt(111)/Ru by the use of X-ray photoelectron spectroscopy. Both iodine and CO were used as surface probes of the electronic properties of Pt(111)/Ru. Little difference was found in the binding energy of Ru in Pt(111)/Ru and in Ru(0001). However, the addition of Ru to Pt(111) induces major changes in the core-level binding energies of chemisorbed iodine and CO as referenced to those adsorbed on Ru(0001). We conclude that the iodine 3d5/2 and CO 1s C core levels experience higher electronic charge on Pt(111)/Ru than on Ru(0001), suggesting a charge transfer from Pt to Ru, or to a Ru-I “surface molecule” within the deposit. The charge transfer from Pt to Ru is in agreement with the result of previous in situ electrochemical NMR investigations [P.K. Babu, H.S. Kim, A. Wieckowski, E. Oldfield (2003) J. Phys. Chem. B 107:7595] and confirms the general trend of reduction in the density of states of Pt due to alloying with Ru [J. McBreen, S. Mukerjee (1995) J. Electrochem. Soc. 142:3399]. Theoretical calculations are in progress to further interpret the origin of the binding-energy shifts observed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. McBreen J, Mukerjee S (1995) J Electrochem Soc 142:3399

    CAS  Google Scholar 

  2. Wieckowski A, Savinova E, Vayenas C (2003) Catalysis and electrocatalysis at nanoparticle surfaces. Dekker, New York, p 1

  3. Park S, Wieckowski A, Weaver MJ (2003) J Am Chem Soc 125:2282

    Article  CAS  PubMed  Google Scholar 

  4. Friedrich KA, Geyzers KP, Dickinson AJ, Stimming U (2002) J Electroanal Chem 524:261

    Article  Google Scholar 

  5. Iwasita T (2002) Electrochim Acta 47:3663

    Article  CAS  Google Scholar 

  6. Markovic NM, Ross PN (2002) Surf Sci Rep 45:121

    Google Scholar 

  7. Waszczuk P, Lu GQ, Wieckowski A, Lu C, Rice C, Masel RI (2002) Electrochim Acta 47:3637

    Article  CAS  Google Scholar 

  8. Waszczuk P, Solla-Gullon J, Kim HS, Tong YY, Montiel V, Aldaz A, Wieckowski A (2001) J Catal 203:1

    Article  CAS  Google Scholar 

  9. Tong YY, Rice C, Wieckowski A, Oldfield E (2000) J Am Chem Soc 122:1123

    Article  CAS  Google Scholar 

  10. Chrzanowski W, Wieckowski A (1999) In: Wieckowski A (ed) Interfacial electrochemistry: theory, experiment, and applications. Dekker, New York, p 937

  11. Koper MTM, Lukkien JJ, Jansen APJ, van Santen RA (1999) J Phys Chem B 103:5522

    Article  CAS  Google Scholar 

  12. Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin E, Mallouk T (1998) Science 280:1735

    Article  CAS  PubMed  Google Scholar 

  13. Hammer B, Norskov JK (2000) Adv Catal 45:71

    Article  CAS  Google Scholar 

  14. Hoffmann R (1988) Rev Mod Phys 60:601

    Article  CAS  Google Scholar 

  15. Mavrikakis M, Hammer B, Norskov JK (1998) Phys Rev Lett 81:2819

    Article  Google Scholar 

  16. Norskov JK, Wiechowski A (organizers), workshop on: “Theory and Surface Measurements of Fuel Cell Catalysis”, Center for Atomic-Scale Materials Physics, University of Denmark, Lyngby, Denmark, June 16–18, 2003

  17. Babu PK, Oldfield E, Wieckowski A (2003) In: Vayenas CG, Conway BE, White RE (eds) Modern aspects of electrochemistry. Kluwer/Plenum, New York, p 1

  18. Kim H, Rabelo de Moraes I, Tremiliosi-Filho G, Haasch R, Wieckowski A (2001) Surf Sci 474:L203

    Article  CAS  Google Scholar 

  19. Viswanathan R, Hou G, Liu R, Bare S, Modica F, Mickelson G, Segre C, Leyarovska N, Smotkin E (2002) J Phys Chem B 106:3458

    Article  CAS  Google Scholar 

  20. Rodriguez JA, Goodman DW (1992) Science 257:897

    CAS  Google Scholar 

  21. Crown A, Johnston C, Wieckowski A (2002) Surf Sci 506:L268

    Article  CAS  Google Scholar 

  22. Chrzanowski W, Wieckowski A (1997) Langmuir 13:5974

    Article  CAS  Google Scholar 

  23. Crown A, Moraes IR, Wieckowski A (2001) J Electroanal Chem 500:333

    Article  CAS  Google Scholar 

  24. Crown A, Wieckowski A (2001) Phys Chem Chem Phys 3:3290

    Article  CAS  Google Scholar 

  25. Clavilier J (1999) In: Wieckowski A (ed) Interfacial electrochemistry: theory, experiment, and applications. Dekker, New York 231–248

  26. Herrero E, Feliu JM, Wieckowski A (1999) Langmuir 15:4944

    Article  CAS  Google Scholar 

  27. Conway BE (1995) Prog Surf Sci 49:331

    Article  CAS  Google Scholar 

  28. Wang JX, Marinkovic NS, Zajonz H, Ocko BM, Adzic RR (2001) J Phys Chem B 105:2809

    Article  CAS  Google Scholar 

  29. Marinkovic NS, Wang JX, Zajonz H, Adzic RR (2000) Electrochem Solid State Lett 3:508

    Article  CAS  Google Scholar 

  30. Marinkovic NS, Wang JX, Zajonz H, Adzic RR (2001) J Electroanal Chem 500:388

    Article  CAS  Google Scholar 

  31. Zurawski D, Wasberg M, Wieckowski A (1990) J Phys Chem 94:2076

    CAS  Google Scholar 

  32. Lu GQ, Waszczuk P, Wieckowski A (2002) J Electroanal Chem 532:49

    Article  CAS  Google Scholar 

  33. Gomez R, Feliu JM, Aldaz A, Weaver MJ (1998) Surf Sci 410:48

    Article  CAS  Google Scholar 

  34. Feliu JM, Orts JM, Fernandezvega A, Aldaz A, Clavilier J (1990) J Electroanal Chem 296:191

    Article  CAS  Google Scholar 

  35. Feliu JM, Orts JM, Gomez R, Aldaz A, Clavilier J (1994) J Electroanal Chem 372:265

    Google Scholar 

  36. Santos E, Leiva EPM, Vielstich W (1991) Electrochim Acta 36:555

    Article  CAS  Google Scholar 

  37. Lebedeva NP, Koper MTM, Feliu JM, van Santen RA (2002) J Phys Chem B 106:12938–12047

    Article  CAS  Google Scholar 

  38. Lebedeva NP, Koper MTM, Herrero E, Feliu JM, van Santen RA (2000) J Electroanal Chem 487:37

    Article  CAS  Google Scholar 

  39. Massong H, Wang HS, Samjeske G, Baltruschat H (2000) Electrochim Acta 46:701

    Article  CAS  Google Scholar 

  40. Gasteiger HA, Markovic N, Ross PN, Cairns EJ (1993) J Phys Chem 97:12020

    CAS  Google Scholar 

  41. Babu PK, Kim HS, Wieckowski A, Oldfield E (2003) J Phys Chem B 107:7595

    Article  CAS  Google Scholar 

  42. Powell CJ (1995) Appl Surf Sci 89:141

    Article  CAS  Google Scholar 

  43. Kim H, de Moraes IR, Tremiliosi G, Haasch R, Wieckowski, A. (2001) Surf Sci 474:L203

    Article  CAS  Google Scholar 

  44. Egelhoff WA (1986) Surf Sci Rep 6:253

    Google Scholar 

  45. Bagus PS, Illas F, Pacchioni G, Parmigiani F (1999) J Electron Spectrosc Relat Phenom 100:215

    Article  CAS  Google Scholar 

  46. Liu G, Davis KA, Meier DC, Bagus PS, Goodman DW, Zajac GW (2003) Phys Rev B 68:035406

    Article  Google Scholar 

  47. Richter B, Kuhlenbeck H, Freund H-J, Bagus PS (2004) Physical Review Letters 93:026805/1–026805/4

    Article  Google Scholar 

  48. Liu G, St Clair TP, Goodman DW (1999) J Phys Chem B 103:8578

    Article  CAS  Google Scholar 

  49. Liu G, Davis KA, Meier DC, Bagus PS, Goodman DW, Zajac GW (2003) Phys Rev B 68:035406

    Article  Google Scholar 

  50. Lu F, Salaita GN, Baltruschat H, Hubbard AT (1987) J Electroanal Chem 222:305

    Article  CAS  Google Scholar 

  51. Dicenzo SB, Wertheim GK, Buchanan DNE (1982) Surf Sci 121:411

    Article  CAS  Google Scholar 

  52. Dicenzo SB, Wertheim GK, Buchanan DNE (1984) Phys Rev B 30:553

    Article  CAS  Google Scholar 

  53. Jo SK, White JM (1992) Surf Sci 261:111

    Article  CAS  Google Scholar 

  54. Kis A, Smith KC, Kiss J, Solymosi F (2000) Surf Sci 460:190

    Article  CAS  Google Scholar 

  55. Babu PK, Kim HS, Oldfield E, Wieckowski A (2003) J Phys Chem B 107:7595–7600

    Article  CAS  Google Scholar 

  56. Parmigiani F, Pacchioni G, Brundle CR, Fowler DE, Bagus PS (1991) Phys Rev B 43:3695

    Article  CAS  Google Scholar 

  57. Norton PR, Goodale JW, Selkirk EB (1979) Surf Sci 83:189

    Article  CAS  Google Scholar 

  58. Rodriguez JA, Truong CM, Goodman DW (1992) J Chem Phys 96:7814

    Article  CAS  Google Scholar 

  59. Fuggle JC, Steinkilberg M, Menzel D (1975) Chem Phys 11:307

    Article  CAS  Google Scholar 

  60. Riedmuller B, Ciobica IM, Papageorgopoulos DC, Frechard F, Berenbak B, Kleyn AW, van Santen RA (2001) J Chem Phys 115:5244

    Article  CAS  Google Scholar 

  61. Ramstad A, Strisland F, Raaen S, Borg A, Berg C (1999) Surf Sci 440:290

    Article  CAS  Google Scholar 

  62. Fohlisch A, Hasselstrom J, Karis O, Vaterlein P, Martensson N, Nilsson A, Heske C, Stichler M, Keller C, Wurth W, Menzel D (1999) Chem Phys Lett 315:194

    Article  CAS  Google Scholar 

  63. Schiffer A, Jakob P, Menzel D (1997) Surf Sci 389:116

    Article  CAS  Google Scholar 

  64. Fuggle JC, Madey TE, Steinkilberg M, Menzel D (1975) Surf Sci 52:521

    Article  CAS  Google Scholar 

  65. Friedrich KA, Geyzers KP, Marmann A, Stimming U, Vogel R (1999) Z Phys Chem 208:137

    CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out in the Center for Microanalysis of Materials, University of Illinois, which is partially supported by the U.S. Department of Energy under grant DEFG02-91-ER45439. This work was also supported by the National Science Foundation Grant CHE 9985837. The authors acknowledge the original design of the electrochemistry–XPS transfer system by P. Mrozek, currently at Micron Technology, Boise, ID 83707, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wieckowski.

Additional information

Dedicated to Zbigniew Galus on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vericat, C., Wakisaka, M., Haasch, R. et al. Binding energy of ruthenium submonolayers deposited on a Pt(111) electrode. J Solid State Electrochem 8, 794–803 (2004). https://doi.org/10.1007/s10008-004-0547-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-004-0547-4

Keywords

Navigation