Skip to main content
Log in

Electron beam-treated organic monolayers as a negative resist for Cu immersion plating on Si

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the present work, we investigate selective immersion plating of Cu on n-type Si(111) surfaces chemically modified with different organic monolayers and subsequently directly patterned by an electron-beam (e-beam). The organic molecules (1-undecylenic acid, 1-decene and 1-octadecene) were covalently attached to a hydrogen-terminated Si surface. The use of such monolayers as masks for electroless copper deposition by immersion plating on Si surfaces was investigated. Clearly, a masking effect can be observed, the efficiency of which depends on the type of molecule. Further, the effect of e-beam irradiation to improve the masking properties of the organic monolayers was studied. For this, the monolayers were locally irradiated using a scanning electron microscope (SEM) equipped with a lithographic tool. The results show that e-beam-modified organic monolayers can be used as a negative tone resist for copper electroless plating. The selectivity of the Cu deposition at e-beam-untreated regions strongly depends on the applied e-beam dose and on the nature of organic molecules. By optimizing the electroless deposition parameters, homogeneous deposition with complete selectivity can be achieved, leading to high lateral resolution of the Cu patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Linford MR, Chidsey CED (1993) J Am Chem Soc 115:12631

    CAS  Google Scholar 

  2. Linford MR, Fenter P, Eisenberger PM, Chidsey CED (1995) J Am Chem Soc 117:3145

    CAS  Google Scholar 

  3. Cicero RL, Wagner P, Linford MR, Hawker CJ, Waymouth RM, Chidsey CED (1997) Polym Prepr 38:904

    CAS  Google Scholar 

  4. Wagner P, Nock S, Spudich JA, Volkmuth WD, Chu S, Cicero RL, Wade CP, Linford MR, Chidsey CED (1997) J Struct Biol 119:189

    Article  CAS  PubMed  Google Scholar 

  5. Effenberger F, Götz G, Bidlingmaier B, Wezstein M (1998) Angew Chem Int Ed 37:2462

    Article  CAS  Google Scholar 

  6. Boukherroub R, Morin S, Sharpe P, Wayner DDM, Allongue P (2000) Langmuir 16:7429

    Article  CAS  Google Scholar 

  7. Buriak JM (2002) Chem Rev 102:1272

    Article  Google Scholar 

  8. Strother T, Cai W, Zhao X, Hamers RJ, Smith LM (2000) J Am Chem Soc 122:1205

    Article  CAS  Google Scholar 

  9. Kumar A, Biebuyck HA, Whitesides GM (1994) Langmuir 10:1498

    CAS  Google Scholar 

  10. Collier CP, Mattersteig G, Wong EW, Luo Y, Beverly K, Sampaio J, Raymo F, Stoddart JF, Heath JR (2000) Science 289:1172

    Article  CAS  PubMed  Google Scholar 

  11. Pease AR, Jeppesen JO, Stoddart JF, Luo Y, Collier CP, Heath JR (2001) Acc Chem Res 34:433

    Article  CAS  PubMed  Google Scholar 

  12. Chen J, Reed MA, Rawlett AM, Tour JM (1999) Science 286:1550

    Article  CAS  PubMed  Google Scholar 

  13. Reed MA, Chen J, Rawlett AM, Price DW, Tour JM (2001) Appl Phys Lett 78:3735

    Article  CAS  Google Scholar 

  14. Gölzhäuser A, Geyer W, Stadler V, Eck W, Grunze M (2000) J Vac Sci Technol B16:6

    Google Scholar 

  15. Balaur E, Djenizian T, Boukherroub R, Chazalviel JN, Ozanam F, Schmuki P (2004) Electrochem Commun 6:153

    Article  CAS  Google Scholar 

  16. Santinacci L, Djenizian T, Schmuki P (2001) J Electrochem Soc 148:640

    Article  Google Scholar 

  17. Zhang Y, Balaur E, Maupai S, Djenizian T, Boukherroub R, Schmuki P (2003) Electrochem Commun 5:337

    Article  CAS  Google Scholar 

  18. Kolb DM, Ullmann R, Will T (1997) Science 275:1097

    Article  CAS  PubMed  Google Scholar 

  19. Schmuki P, Erickson LE (2000) Phys Rev Lett 85:2985

    Article  CAS  PubMed  Google Scholar 

  20. Djenizian T, Santinacci L, Schmuki P (2003) Surf Sci 524:40

    Article  CAS  Google Scholar 

  21. Schmuki P, Maupai S, Djenizian T, Santinacci L, Spiegel A, Schlierf U (2003) In: Nalwa HS (ed) Encyclopedia of nanotechnology. American Scientific, Stevenson Ranch, CA (accepted)

  22. Lercel MJ, Whelan CS, Craighead HG, Seshadri K, Allara DL (1996) J Vac Sci Technol 14:4085

    Article  CAS  Google Scholar 

  23. Allongue P, Henry de Villeneuve C, Morin S, Boukherroub R, Wayner DDM (2000) Electrochim Acta 45:4591

    Article  CAS  Google Scholar 

  24. Boukherroub R, Bensebaa F, Morin S, Wayner DDM (1999) Langmuir 15:3831

    Article  CAS  Google Scholar 

  25. Norga GJ, Platero M, Black KA, Reddy AJ, Michel J, Kimerling LC (1997) J Electrochem Soc 144:2801

    CAS  Google Scholar 

  26. Brzoska JB, Shahidzadeh N, Rondelez F (1992) Nature 360:719

    Article  CAS  Google Scholar 

  27. Parikh AN, Allara DL, Azouz IB, Rondelez F (1994) J Phys Chem 98:7577

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of this work from the CCUFB and FAU. Helga Hildebrandt is acknowledged for her help with the SEM and XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Schmuki.

Additional information

Dedicated to Zbigniew Galus on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balaur, E., Zhang, Y., Djenizian, T. et al. Electron beam-treated organic monolayers as a negative resist for Cu immersion plating on Si. J Solid State Electrochem 8, 772–777 (2004). https://doi.org/10.1007/s10008-004-0544-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-004-0544-7

Keywords

Navigation