Skip to main content
Log in

Copper corrosion in buffered and non-buffered synthetic seawater: a comparative study

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical behaviour of copper in neutral buffered and non-buffered synthetic seawater and in pure chloride solutions has been studied by cyclic voltammetry, weight loss measurements, open circuit potential and scanning electron microscopy (SEM). Values of the repassivation potentials of Cu in non-buffered and buffered synthetic seawater, at 50 mV s−1, were 0.12 and 0.46 V vs. SCE, respectively. The sharpness, heights and location of the different peaks as well as their charges were shown to be influenced by the composition of the solution, buffering conditions, deoxygenation, polarization potential and time. High chloride concentrations lead to higher oxidation charges. The anodic and the cathodic charges were shown to increase as the chloride concentration increases. The open circuit potential transients of copper in non-deoxygenated, non-buffered synthetic seawater indicate pitting from the beginning of the exposure, while in buffered solutions the pitting appeared only after a quite long exposure period, i.e. after 40 days. Corrosion rates of Cu samples after 3 months of immersion were higher in solutions of pure chloride (0.5 M) than in synthetic seawater. After six months the differences were even more noticeable. SEM images have showed a somewhat higher density of pits on copper samples immersed in the chloride solution (0.5 M), in comparison with those in synthetic seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shams El Din AM, Abd El Wahab FM (1964) Electrochim Acta 9:113

    Article  Google Scholar 

  2. Miller B (1969) J Electrochem Soc 116:1675

    CAS  Google Scholar 

  3. Hampson NA, Lee JB, Macdonald KI (1971) J Electroanal Chem 32:165

    Article  CAS  Google Scholar 

  4. Ambrose J, Barradas RG, Shoesmith DW (1973) J Electroanal Chem 47:47

    Article  CAS  Google Scholar 

  5. Macdonald DD, Owen D (1973) J Electrochem Soc 120:317

    CAS  Google Scholar 

  6. Macdonald DD (1974) J Electrochem Soc 121:651

    CAS  Google Scholar 

  7. Castro Luna AM, Marciano SL, Arvia AJ (1978) J Appl Electrochem 8:12

    Google Scholar 

  8. Strehblow HH, Titze B (1980) Electrochim Acta 25:839

    Article  CAS  Google Scholar 

  9. Abd El Haleem SS, Ateya BG (1981) J Electroanal Chem 117:309

    Article  Google Scholar 

  10. Abrantes LM, Castillo ML, Norman C, Peter LM (1984) J Electroanal Chem163:209

    Article  Google Scholar 

  11. Martins ME, Arvia AJ (1984) J Electroanal Chem 136:XXX

    Google Scholar 

  12. Gennero de Chialvo MR, Marchiano SL, Arvia AJ (1984) J Appl Electrochem 14:165

    Google Scholar 

  13. Deutscher RL, Woods R (1986) J Appl Electrochem 16:413

    CAS  Google Scholar 

  14. Hong Pyun C, Park S (1986) J Electrochem Soc 13:2024

    Google Scholar 

  15. Lohrengel MM, Schultze JW, Speckmann HD, Strebhlow H-H (1987) Electrochim Acta 32:733

    Article  CAS  Google Scholar 

  16. Babíc R, Metikos-Hukovíc M, Jukić A (2001) J Electrochem Soc 148:B146

    Article  Google Scholar 

  17. Strehblow HH, Maurice V, Marcus P (2001) Electrochim Acta 46:3755

    Article  CAS  Google Scholar 

  18. Muylder JV (1981) In: Bockris JO’M, Conway BE, Yeager E, White RE (eds) Comprehensive treatise of electrochemistry, vol 4. Plenum Press, New York, p XXX

  19. Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, New York

  20. Al-Kharafi FM, El-Tanatanwy YA (1982) Corros Sci 1:22

    Google Scholar 

  21. Edwards M, Rehring J, Meyer T (1994) Corros Sci 50:366

    CAS  Google Scholar 

  22. Tantanwy YA, Al-Kharafi FM, Katrib A (1981) J Electroanal Chem 125:321

    Article  Google Scholar 

  23. Laz MM, Souto RM, Gonzalez S, Salvarezza RC, Arvia AJ (1992) Electrochim Acta 37:655

    Article  CAS  Google Scholar 

  24. Drogowsa M, Brossard L, Ménard H (1992) J Electrochem Soc 139:2787

    Google Scholar 

  25. Bustorff A, Muylder JV (1964) Electrochim Acta 9:60

    Article  Google Scholar 

  26. Altukhov VK, Marshakov IK, Voronstov ES, Klepinina TN (1976) Elektrokhimiya 12:88

    CAS  Google Scholar 

  27. Correia de Sá AI (1992) MSc Thesis, Lisbon

  28. Fonseca ITE, Marin ACS, Correia de Sá AI (1992) Electrochim Acta 37:2541

    Article  CAS  Google Scholar 

  29. Jardy A, Lasalle-Molin AL, Keddam M, Takenouti H (1992) Electrochim Acta 37:2195

    Article  CAS  Google Scholar 

  30. Souto RM, Gonzalez S, Salvarezza RC, Arvia AJ (1994) Electrochim Acta 39:XXXX

    Article  Google Scholar 

  31. Fonseca ITE, Correia de Sà AI (1995) Mater Sci Forum 511:192

    Google Scholar 

  32. Drogowska M, Brossard L, Menard H (1992) J Electrochem Soc 139:39

    CAS  Google Scholar 

  33. Perez Sanchez M, Barrera M, Gonzalez S, Souto RM (1990) Electrochim Acta 35:1337

    Article  Google Scholar 

  34. Duthil J, Mankowski G, Giusti A (1996) Corros Sci 38:1839

    Article  CAS  Google Scholar 

  35. Mankowski G (1997) Corros Sci 27:39

    Google Scholar 

  36. Milosev I, Metikos M, Hukovic M, Drogowska M, Menard H, Brossard L (1992) J Electrochem Soc 139:2409

    CAS  Google Scholar 

  37. Brossard RL (1983) J Electrochem Soc 130:1109

    CAS  Google Scholar 

  38. Bjorndall WD, Nobe K (1984) Corrosion 40:82

    Google Scholar 

  39. Dhar HP, White RH, Burnell G, Darby R (1985) Corrosion 41:317

    CAS  Google Scholar 

  40. Lee HP, Nobe K (1986) J Electrochem Soc 133:2035

    CAS  Google Scholar 

  41. Crousier J, Pardessus L, Crousier JP (1988) Electrochim Acta 33:1039

    Article  CAS  Google Scholar 

  42. Mansfeld F, Little B (1992) Electrochim Acta 37:2291

    Article  CAS  Google Scholar 

  43. Millet B, Fiaud C, Sutter EMM (1995) Corros Sci 378:1903

    Article  Google Scholar 

  44. Sutter EM, Millet MB, Fiaud C, Lincot D (1995) J Electroanal Chem 386:101

    Article  CAS  Google Scholar 

  45. Modestov AD, Zhou GD, Ge H-H, Loo BH (1995) J Electrochem Soc 380:63

    Article  CAS  Google Scholar 

  46. Deslouis C, Tribollet B, Mengoli G, Musiani MM (1988) J Appl Electrochem 18:374

    CAS  Google Scholar 

  47. Chialvo MR, Salvarezza RC, Vasquez Moll V, Arvia AJ (1985) Electrochim Acta 30:1501

    Article  Google Scholar 

  48. Elsner CI, Salvarezza RC, Arvia AJ (1988) Electrochim Acta 33:1735

    Article  CAS  Google Scholar 

  49. Awad SA, Kamel KM, Abd El-Hadi Z, Bayumi HA (1986) J Electroanal Chem199:341

    Article  Google Scholar 

  50. Bech-Nielsen G, Jaskula M, Chorkendorff I, Larsen J (2002) Electrochim Acta 47:42

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Fundação para a Ciência e Tecnologia (FCT) for providing financial support to Centro de Electroquímica e Cinética da Universidade de Lisboa-CECUL – Research Unit POCTI/301/2003 (vertente FEDER). J. Ferreira thanks the FCT for a grant, in the framework of project POCTI/CTM/39846/2001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inês Teodora Elias da Fonseca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, J.P., Rodrigues, J.A. & da Fonseca, I.T.E. Copper corrosion in buffered and non-buffered synthetic seawater: a comparative study. J Solid State Electrochem 8, 260–271 (2004). https://doi.org/10.1007/s10008-003-0445-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-003-0445-1

Keywords

Navigation