Skip to main content
Log in

Electrochemical study of Meldola's blue, methylene blue and toluidine blue immobilized on a SiO2/Sb2O3 binary oxide matrix obtained by the sol-gel processing method

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

SiO2/Sb2O3 (SiSb), having a specific surface area, S BET, of 788 m2 g−1, an average pore diameter of 1.9 nm and 4.7 wt% of Sb, was prepared by the sol-gel processing method. Meldola's blue (MeB), methylene blue (MB) and toluidine blue (TB) were immobilized on SiSb by an ion exchange reaction. The amounts of the dyes bonded to the substrate surface were 12.49, 14.26 and 22.78 μmol g−1 for MeB, MB and TB, respectively. These materials were used to modify carbon paste electrodes. The midpoint potentials (E m) of the immobilized dyes were −0.059, −0.17 and −0.18 V vs. SCE for SiSb/MeB, SiSb/MB and SiSb/TB modified carbon paste electrodes, respectively. A solution pH between 3 and 7 practically did not affect the midpoint potential of the immobilized dyes. The electrodes presented reproducible responses and were chemically stable under various oxidation-reduction cycles. Among the immobilized dyes, MeB was the most efficient to mediate the electron transfer for NADH oxidation in aqueous solution at pH 7. In this case, amperometric detection of NADH at an applied potential of 0 mV vs. SCE gives linear responses over the concentration range of 0.1–0.6 mmol L−1, with a detection limit of 7 μmol L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Alfaya AAS, Gushikem Y (1999) J Colloid Interface Sci 209:428–434

    Article  CAS  PubMed  Google Scholar 

  2. Zaitseva G, Gushikem Y, Ribeiro ES, Rosatto SS (2002) Electrochim Acta 47:1469–1474

    Article  CAS  Google Scholar 

  3. Gao XT, Fierro JLG, Wachs IE (1999) Langmuir 15:3169–3178

    Article  CAS  Google Scholar 

  4. Menon V, Popa VT, Contescu C, Schwarz JA (1998) Rev Roum Chim 43:393–397

    CAS  Google Scholar 

  5. Miller JM, Lakshmi LJ (1998) J Phys Chem B 102:6465–6470

    Article  CAS  Google Scholar 

  6. Kochkar H, Figueras F (1997) J Catal 171:420–430

    Article  CAS  Google Scholar 

  7. Dutoit DCM, Schneider M, Fabrizioli P, Baiker A (1997) J Mater Chem 7:271–278

    Article  CAS  Google Scholar 

  8. Castellani AM, Gushikem Y (2000) J Colloid Interface Sci 230:195–199

    Article  CAS  PubMed  Google Scholar 

  9. Gonçalves JE, Gushikem Y, de Castro SC (1999) J Non-Cryst Solids 260:125-131

    Google Scholar 

  10. Walcarius A (1998) Electroanalysis 10:1217–1235

    CAS  Google Scholar 

  11. Walcarius A (2001) Chem Mater 13:3351–3372

    Article  CAS  Google Scholar 

  12. Walcarius A (2001) Electroanalysis 13:701–718

    Article  CAS  Google Scholar 

  13. Ferreira CU, Gushikem Y, Kubota LT (2000) J Solid State Electrochem 4:298–303

    Article  CAS  Google Scholar 

  14. Kubota LT, Gouveia F, Andrade AN, Milagres BG, Oliveira Neto G (1996) Electrochim Acta 41:1465–1469

    Article  CAS  Google Scholar 

  15. Perez EF, Oliveira Neto G, Kubota LT (2001) Sens Actuators B 72:80–85

    Article  Google Scholar 

  16. Pessoa CA, Gushikem Y, Kubota LT (1997) Electroanalysis 9:800–803

    CAS  Google Scholar 

  17. Pessoa CA, Gushikem Y, Kubota LT, Gorton L (1997) J Electroanal Chem 431:23–27

    CAS  Google Scholar 

  18. Ottaway JM (1972) In: Bard AJ (ed) Indicators. Pergamon, Oxford, pp 469–529

  19. Gorton L, Tortensson A, Jaegfeldt H, Johansson G (1984) J Electroanal Chem 161:103–120

    Article  CAS  Google Scholar 

  20. Chi Q, Dong S (1995) Electroanalysis 7:147–153

    CAS  Google Scholar 

  21. Malinauskas A, Ruzgas T, Gorton L (2000) J Electroanal Chem 484:55–63

    CAS  Google Scholar 

  22. Galip H, Hasipoglu H, Gunduz G (1999) J Appl Polym Sci 74:2906–2910

    Article  CAS  Google Scholar 

  23. Sato H, Kondo K, Tsuge S, Ohtani H, Sato N (1998) Polym Degrad Stabil 62:41–48

    Article  CAS  Google Scholar 

  24. Jung HC, Kim WN, Lee CR, Suh KS, Kim SR (1998) J Polym Eng 18:115–130

    CAS  Google Scholar 

  25. Carty P, White S (1995) Polym Degrad Stabil 47:305–310

    Article  CAS  Google Scholar 

  26. Nalin M, Poulain M, Ribeiro SJL, Messaddeq Y (20001) J Non-Cryst Solids 284:110–116

  27. Schubert UA, Anderle F, Spengler J, Zuhlke J, Eberle HJ, Grasselli RK, Knozinger H (2001) Top Catal 15:195–200

    Article  CAS  Google Scholar 

  28. Youk JH, Kambour RP, MacKnight WJ (2000) Macromolecules 33:3606–3610

    Article  CAS  Google Scholar 

  29. Zanthoff HF, Grünert W, Buchholz S, Heber M, Stievano L, Wagner FE, Wolf GU (2000) J Mol Catal A 162:435–454

    CAS  Google Scholar 

  30. Vislovskiv VP, Bychkov VY, Sinev MY, Shamilov NT, Ruiz P, Schay Z (2000) Catal Today 61:325–331

    Article  Google Scholar 

  31. Janardanan C, Nair SMK (1992) Indian J Chem A 31:136–138

    Google Scholar 

  32. Janardanan C, Nair SMK (1990) Analyst 115:85–87

    CAS  Google Scholar 

  33. Goodhew PJ, Humphreys FJ (1992) Electron microscopy and analysis, 2nd edn. Taylor & Francis, London, pp 154–198

  34. Bearden JA (1967) Rev Mod Phys 39:78–124

    Article  CAS  Google Scholar 

  35. Antonov L, Gergov G, Petrov V, Kubista M, Nygren J (1999) Talanta 49:99–106

    Article  CAS  Google Scholar 

  36. Jockusch S, Turro NJ, Tomalia DA (1995) Macromolecules 28:7416–7418

    CAS  Google Scholar 

  37. Schlereth DD, Karyakin AA (1995) J Electroanal Chem 395:221–232

    Article  CAS  Google Scholar 

  38. Munteanu FD, Kubota LT, Gorton L (2001) J Electroanal Chem 509:2–10

    Article  CAS  Google Scholar 

  39. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New York, pp 519–540

    Google Scholar 

  40. Persson B, Gorton L (1990) J Electroanal Chem 292:115–138

    CAS  Google Scholar 

  41. Kubota LT, Munteanu F, Roddick-Lanzilotta A, McQuillan AJ, Gorton L (2000) Quim Anal 19:15–27

    CAS  Google Scholar 

Download references

Acknowledgements

E.S.R. and S.S.R. are indebted to the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil, for post-doctoral and PhD fellowships, respectively. Y.G. and L.T.K. acknowledge FAPESP and FINEP/Pronex for financial support. The authors thankl Prof. Carol H. Collins for English language revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Gushikem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, E.S., Rosatto, S.S., Gushikem, Y. et al. Electrochemical study of Meldola's blue, methylene blue and toluidine blue immobilized on a SiO2/Sb2O3 binary oxide matrix obtained by the sol-gel processing method. J Solid State Electrochem 7, 665–670 (2003). https://doi.org/10.1007/s10008-003-0368-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-003-0368-x

Keywords

Navigation