Skip to main content

Advertisement

Log in

Bistriazolotriazole-tetramine: commendable energetic moiety and cation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Various 7H,7′H-[6,6′-bi[1,2,4]triazolo[4,3-b][1,2,4]triazole]-3,3′,7,7′-tetramine (A) based nitrogen-rich energetic salts were designed and their properties explored. All energetic salts possess relatively high nitrogen content (> 48%), positive heats of formation (> 429 kJ/mol) and stability owing to a significant contribution from fused backbone. The cationic component shows a very high heat of formation (2516 kJ/mol); therefore, it is highly suitable for enthalpy enhancement in new energetic salts. The cation was paired with the energetic anions nitrate (NO3), perchlorate (ClO4), dinitromethanide (CH(NO2)2), trinitromethanide (C(NO2)3), nitroamide (NHNO2), and dinitroamide (N(NO2)2) to improve oxygen balance and detonation performance. Designed salts show moderate detonation velocities (7.9–8.7 km/s) and pressures (23.8 − 33.1 GPa). The distribution of frontier molecular orbitals, molecular electrostatic surface potentials, QTAIM topological properties, and noncovalent interactions of designed salts were simulated to understand the electronic structures, charge distribution in molecules, hydrogen bonding, and other nonbond interactions. The predicted safety factor (SF) and impact sensitivity (H50) of designed salts suggest their insensitivity to mechanical stimuli. This work explored the 7H,7′H-[6,6′-bi[1,2,4]triazolo[4,3-b][1,2,4]triazole]-3,3′,7,7′-tetramine as a suitable cationic component which could be promising and serve exemplarily in energetic materials.

Methods

The optimization and energy calculations of all the designed compounds were carried out at the B3LYP/6–311 +  + G(d,p) and M06-2X/def2-TZVPP levels, utilizing the Gaussian software package. The molecular surface electrostatic potential, quantum theory of atoms in molecules (QTAIM), reduced density gradient (RDG), and noncovalent interaction (NCI) analysis were performed by employing Multiwfn software. The EXPLO5 (v 7.01) thermochemical code and PILEM web application were used to predict the detonation properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) A review of energetic materials synthesis. Thermochim Acta 384:187–204

    CAS  Google Scholar 

  2. Zhang J, Zhou J, Bi F, Wang B (2020) Energetic materials based on poly furazan and furoxan structures. Chin Chem Lett 31:2375–2394

    CAS  Google Scholar 

  3. Gao H, Zhang Q, Shreeve JM (2020) Fused heterocycle-based energetic materials (2012–2019). J Mater Chem A 8:4193–4216

    CAS  Google Scholar 

  4. Wu JT, Xu J, Li W, Li HB (2020) Coplanar fused heterocycle-based energetic materials. Propellants Explos Pyrotech 45:536

    CAS  Google Scholar 

  5. Manzoor S, Tariq Q, Yin X, Zhang JG (2021) Nitro-tetrazole based high performing explosives: recent overview of synthesis and energetic properties. Def Technol 17:1995–2010

    Google Scholar 

  6. He P, Zhang JG, Yin X, Wu JT, Wu L, Zhou ZN, Zhang TL (2016) Energetic salts based on tetrazole N-oxide. Chem Eur J 22:7670–7685

    CAS  PubMed  Google Scholar 

  7. Tang J, Yang H, Cui Y, Cheng G (2021) Nitrogen-rich tricyclic-based energetic materials. Mater Chem Front 5:7108–7118

    CAS  Google Scholar 

  8. Banik S, Yadav AK, Kumar P, Ghule VD, Dharavath S (2022) Unfolding the chemistry of FOX-7: unique energetic material and precursor with numerous possibilities. Chem Eng J 431:133378

    CAS  Google Scholar 

  9. Zhang S, Gao Z, Lan D, Jia Q, Liu N, Zhang J, Kou K (2020) Recent advances in synthesis and properties of nitrated-pyrazoles based energetic compounds. Molecules 25:3475

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gao H, Shreeve JM (2011) Azole-based energetic salts. Chem Rev 111:7377–7436

    CAS  PubMed  Google Scholar 

  11. Klapötke TM (2012) Chemistry of high-energy materials. Boston, De Gruyter, Berlin, p 2012

    Google Scholar 

  12. Keshavarz MH, Klapötke TM (2021) The properties of energetic materials: sensitivity, physical and thermodynamic properties. Boston, De Gruyter, Berlin

    Google Scholar 

  13. Wu Q, Hu Q, Tan L, Zhu W (2023) New cage super insensitive high energy materials constructed by the Diels-Alder reaction based on nitroazoles: a DFT study. Mater Chem Phys 298:127461

    CAS  Google Scholar 

  14. Wang Y, Hu L, Pang S, Shreeve JM (2023) Nitroimino as an energetic group in designing energetic materials for practical use, a tautomerism from nitroamino. J Mater Chem A 11:13876–13888

    CAS  Google Scholar 

  15. Wu Q, Teng Z, Zhu W (2022) Desensitizing high energy materials HMX and CL-20 by the smallest all carbon compound cyclo[18]carbon: a DFT study. J Mater Sci 57:10197–10212

    CAS  Google Scholar 

  16. Wu Q, Sun T, Tan L, Zhu W (2022) First principle study and Hirshfeld surface analysis on the effect of type, number, and position of small molecules on the structural stability and optical property of a powerful energetic crystal 6-nitro-7-azido-pyrazol[3,4-d][1,2,3]triazine-2-oxide. Mater Adv 3:1035–1046

    CAS  Google Scholar 

  17. Yang J, Bai T, Guan J, Li M, Zhen Z, Dong X, Wang Y, Wang Y (2023) Novel fluorine-containing energetic materials: how potential are they? A computational study of detonation performance. J Mol Model 29:228

    CAS  PubMed  Google Scholar 

  18. Xiao T, Chen J, Xu J, Ma P, Ma C (2023) Theoretical insight into different energetic groups on the performance of energetic materials 2,5,7,9-tetranitro-2,5,7,9-tetraazabicyclo[4,3,0]nonane-8-one. J Mol Model 29:231

    CAS  PubMed  Google Scholar 

  19. Wu Q, Yan G, Tan L, Zhu W, Zhou Y (2023) Theoretical design of new insensitive high energy metal complexes based on the double fused-ring insensitive ligands strategy. J Mol Model 29:84

    CAS  PubMed  Google Scholar 

  20. Tang Y, He C, Imler GH, Parrish DA, Shreeve JM (2017) High-performing and thermally stable energetic 3,7-diamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazole derivatives. J Mater Chem A 5:6100–6105

    CAS  Google Scholar 

  21. Nie X, Lei C, Xiong H, Cheng G, Yang H (2020) Methylation of a triazole-fused framework to create novel insensitive energetic materials. Energ Mater Front 1:165–171

    Google Scholar 

  22. Lei C, Yang H, Zhang Q, Cheng G (2021) Synthesis of nitrogen-rich and thermostable energetic materials based on hetarenecarboxylic acids. Dalton Trans 50:14462–14468

    CAS  PubMed  Google Scholar 

  23. Gaussian 09, Revision E.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian Inc, Wallingford, CT

  24. Lu T (2012) Chen F Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    PubMed  Google Scholar 

  25. Ghule VD (2012) Computational studies on energetic properties of trinitro-substituted imidazole–triazole and pyrazole–triazole derivatives. J Phys Chem A 116:9391–9397

    CAS  PubMed  Google Scholar 

  26. Ghule VD (2013) Computational screening of nitrogen-rich energetic salts based on substituted triazine. J Phys Chem C 117:16840–16849

    CAS  Google Scholar 

  27. Nirwan A, Ghule VD (2018) Estimation of heats of formation for nitrogen-rich cations using G3, G4, and G4 (MP2) theoretical methods. Theoret Chem Acc 137:115

    Google Scholar 

  28. Maan A, Ghule VD, Dharavath S (2023) Computational manifestation of nitro-substituted Tris(triazole): understanding the impact of isomerism on performance-stability parameters. J Phys Chem A 127:6467–6475

    CAS  PubMed  Google Scholar 

  29. Devi R, Maan A, Ghule VD, Dharavath S (2023) Functionalization of fused imidazole-oxadiazole, triazole-oxadiazole and tetrazole-oxadiazole skeletons: search for stable and potential energetic materials. Comput Theor Chem 1229:114352

    CAS  Google Scholar 

  30. Sharma K, Maan A, Ghule VD, Dharavath S (2023) Azo-bridged triazole macrocycles: computational design, energy content, performance, and stability assessment. J Phys Chem A 127:10128–10138

    CAS  PubMed  Google Scholar 

  31. Bondarchuk SV (2021) Diazoamination: a simple way to enhance detonation performance of aminoaromatic and aminoheterocyclic energetic materials. FirePhysChem 1:97–102

    Google Scholar 

  32. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory. J Chem Phys 126:084108

    PubMed  Google Scholar 

  33. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory using reduced order perturbation theory. J Chem Phys 127:124105

    PubMed  Google Scholar 

  34. Dorofeeva OV, Ryzhova ON, Suntsova MA (2013) Accurate prediction of enthalpies of formation of organic azides by combining G4 theory calculations with an isodesmic reaction scheme. J Phys Chem A 117:6835–6845

    CAS  PubMed  Google Scholar 

  35. Dorofeeva OV, Suntsova MA (2015) Enthalpy of formation of CL-20. Comput Theor Chem 1057:54–59

    CAS  Google Scholar 

  36. Jenkins HDB, Tudela D, Glasser L (2002) Lattice potential energy estimation for complex ionic salts from density measurements. Inorg Chem 41:2364–2367

    CAS  PubMed  Google Scholar 

  37. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) An electrostatic interaction correction for improved crystal density prediction. Mol Phys 107:2095–2101

    CAS  Google Scholar 

  38. Politzer P, Martinez J, Murray JS, Concha MC (2010) An electrostatic correction for improved crystal density predictions of energetic ionic compounds. Mol Phys 108:1391–1396

    CAS  Google Scholar 

  39. Muravyev NV, Wozniak DR, Piercey DG (2022) Progress and performance of energetic materials: open dataset, tool, and implications for synthesis. J Mater Chem A 10:11054–11073

    CAS  Google Scholar 

  40. Zhang J, Lu T (2021) Efficient evaluation of electrostatic potential with computerized optimized code. Phys Chem Chem Phys 23:20323–20328

    CAS  PubMed  Google Scholar 

  41. Wick CR, Clark T (2018) On bond-critical points in QTAIM and weak interactions. J Mol Model 24:1–9

    Google Scholar 

  42. Shahbazian S (2018) Why bond critical points are not “bond” critical points. Chem Eur J 24:5401–5405

    CAS  PubMed  Google Scholar 

  43. Zhang X, Gong X (2014) Screening nitrogen-rich bases and oxygen-rich acids by theoretical calculations for forming highly stable salts. ChemPhysChem 15:2281–2287

    CAS  PubMed  Google Scholar 

  44. Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122:11154–11161

    CAS  Google Scholar 

  45. Venkataramanan NS, Suvitha A, Kawazoe Y (2017) Intermolecular interaction in nucleobases and dimethyl sulfoxide/water molecules: a DFT, NBO, AIM and NCI analysis. J Mol Graph 78:48–60

    CAS  Google Scholar 

  46. Otero-de-la-Roza A, Johnson ER, García JC (2012) Revealing non-covalent interactions in solids: NCI plots revisited. Phys Chem Chem Phys 14:12165–12172

    CAS  PubMed  Google Scholar 

  47. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Aihara J (1999) Weighted HOMO-LUMO energy separation as an index of kinetic stability for fullerenes. Theor Chem Acc 102:134–138

    CAS  Google Scholar 

  49. Zhang H, Cheung F, Zhao F, Cheng XL (2009) Band gaps and the possible effect on impact sensitivity for some nitro aromatic explosive materials. Int J Quant Chem 109:1547–1552

    CAS  Google Scholar 

  50. Qi-L Y, Zeman S (2012) Theoretical evaluation of sensitivity and thermal stability for high explosives based on quantum chemistry methods: a brief review. Int J Quantum Chem 113:1049–1061

    Google Scholar 

  51. Zhu W, Xiao H (2010) First-principles band gap criterion for impact sensitivity of energetic crystals: a review. Struct Chem 21:657–665

    CAS  Google Scholar 

  52. Zeman S, Jungová M (2016) Sensitivity and performance of energetic materials. Propellants Explos Pyrotech 41:426–451

    CAS  Google Scholar 

  53. Bondarchuk SV (2022) Chapter 9 - Interplay between chemical and mechanical factors. In Theor Comput Chem 22:195–213 (Molecular Modeling of the Sensitivities of Energetic Materials, edited by Mathieu D, Elsevier)

    CAS  Google Scholar 

  54. Muravyev NV, Meerov DB, Monogarov KA, Melnikov IN, Kosareva EK, Fershtat LL, Sheremetev AB, Dalinger IL, Fomenkov IV, Pivkina AN (2021) Sensitivity of energetic materials: evidence of thermodynamic factor on a large array of CHNOFCl compounds. Chem Eng J 421:129804

    CAS  Google Scholar 

  55. Keshavarz MH, Zali A, Shokrolahi A (2009) A simple approach for predicting impact sensitivity of polynitroheteroarenes. J Hazard Mater 166:1115–1119

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript. Rimpi thank UGC-CSIR, Human Resource Development Group, Government of India for the Research Fellowship. Kalpana thanks the Council of Scientific &; Industrial Research (CSIR), India, for providing the Junior Research Fellowship (CSIR-HRDG Ref. No.: Sept/06/22(i)EU-V).

Author information

Authors and Affiliations

Authors

Contributions

Rimpi Devi: conceptualization, methodology, programming, validation, writing—original draft. Kalpana Sharma: conceptualization, investigation, writing—original draft. Vikas D. Ghule: investigation, methodology, funding acquisition, supervision, project administration, software, writing—original draft, writing—review and editing. Srinivas Dharavath: funding acquisition, software, writing—review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vikas D. Ghule.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5340 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, R., Sharma, K., Ghule, V.D. et al. Bistriazolotriazole-tetramine: commendable energetic moiety and cation. J Mol Model 30, 98 (2024). https://doi.org/10.1007/s00894-024-05892-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05892-6

Keywords

Navigation