Skip to main content
Log in

First-principles study on α/β/γ-FeB6 monolayers as potential gas sensor for H2S and SO2

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

The adsorptions of toxic gases SO2 and H2S on 2D α/β/γ-FeB6 monolayer were investigated using density functional theory calculations. To analyze the interaction between gas molecule H2S/SO2 and α/β/γ-FeB6 monolayer, we calculated adsorption energy, adsorption distance, Mullikan charge, charge density difference, band structure, the density of states, work function, and theoretical recovery time. The adsorption energies show that H2S/SO2 is chemisorbed on α/β-FeB6 while H2S/SO2 is physiosorbed on γ-FeB6 monolayer. As a result, γ-FeB6 has a short recovery time for H2S (5.71×10−8 s)/SO2 (1.94×10−5 s) due to modest adsorption. Therefore, γ-FeB6 may be a promising candidate for reusable H2S/SO2 sensors at room temperature. Although H2S is chemisorbed on α/β-FeB6, as the working temperature rises to 500 K, the recovery time of α/β-FeB6 for H2S can decrease to 1.13×10−1 s and 2.08×10−1 s, respectively, which are well within the detectable range. So, α/β-FeB6 monolayer also may be a good candidate for H2S gas sensor.

Methods

Calculations were performed at GGA-PBE/DNP level using the Dmol3 module implemented in the Material Studio 2018 software package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Beauchamp R, Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA, Leber P (1984) A critical review of the literature on hydrogen sulfide toxicity. CRC Crit Rev Toxicol 13:25–97

    Article  CAS  Google Scholar 

  2. Wiheeb AD, Shamsudin IK, Ahmad MA, Murat MN, Kim J, Othman MR (2013) Present technologies for hydrogen sulfide removal from gaseous mixtures. Rev Chem Eng 29:449–470

    Article  CAS  Google Scholar 

  3. US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry-Atsdr. 1999.

    Google Scholar 

  4. Khan MAH, Rao MV, Li Q (2019) Recent advances in electrochemical sensors for detecting toxic gases: NO2, SO2 and H2S. Sensors 19:905

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kharol S, Fioletov V, McLinden C, Shephard M, Sioris C, Li C, Krotkov N (2020) Ceramic industry at Morbi as a large source of SO2 emissions in India. Atmos Environ 223:117243

    Article  CAS  Google Scholar 

  6. Liu X, Ma C, Yang C, Diao Y (2015) Power station flue gas desulfurization system based on automatic online monitoring platform. J Digit Inf Manag 13:480–488

    Google Scholar 

  7. Yuan W, Shi G (2013) Graphene-based gas sensors. J Mater Chem A 1:10078–10091

    Article  CAS  Google Scholar 

  8. Basu S, Bhattacharyya P (2012) Recent developments on graphene and graphene oxide based solid state gas sensors. Sensors Actuators B Chem 173:1–21

    Article  CAS  Google Scholar 

  9. Wang X, Qin J, Hu Q, Das P, Wen P, Zheng S, Zhou F, Feng L, Wu ZS (2022) Multifunctional mesoporous polyaniline/graphene nanosheets for flexible planar integrated microsystem of zinc ion microbattery and gas sensor. Small 18:2200678

    Article  CAS  Google Scholar 

  10. Kang M-A, Ji S, Kim S, Park C-Y, Myung S, Song W, Lee SS, Lim J, An K-S (2018) Highly sensitive and wearable gas sensors consisting of chemically functionalized graphene oxide assembled on cotton yarn. RSC Adv 8:11991–11996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ovsianytskyi O, Nam Y-S, Tsymbalenko O, Lan P-T, Moon M-W, Lee K-B (2018) Highly sensitive chemiresistive h2s gas sensor based on graphene decorated with Ag nanoparticles and charged impurities. Sens Actuators B Chem 257:278–285

    Article  CAS  Google Scholar 

  12. Kumar R, Goel N, Kumar M (2017) UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS sensors 2:1744–1752

    Article  CAS  PubMed  Google Scholar 

  13. Wang B, Gu Y, Chen L, Ji L, Zhu H, Sun Q (2022) Gas sensing devices based on two-dimensional materials: a review. Nanotech 33:252001

    Article  Google Scholar 

  14. He X, Ying Z, Wen F, Li L, Zheng X, Zheng P, Wang G (2021) MoS2-doped spherical SnO2 for SO2 sensing under Uv light at room temperature. Mater Sci Semicond Process 134:105997

    Article  CAS  Google Scholar 

  15. Kim S, Koh H, Ren C, Kwon O, Maleski K, Cho S, Anasori B, Kim C, Choi Y, Kim J (2018) Metallic Ti3C2Tx mxene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12:986–993

    Article  CAS  PubMed  Google Scholar 

  16. Abbas AN, Liu B, Chen L, Ma Y, Cong S, Aroonyadet N, Kopf M, Nilges T, Zhou C (2015) Black phosphorus gas sensors. ACS Nano 9:5618–5624

    Article  CAS  PubMed  Google Scholar 

  17. Li J-H, Wu J, Yu Y-X (2021) DFT exploration of sensor performances of two-dimensional WO3 to ten small gases in terms of work function and band gap changes and Iv responses. Appl Surf Sci 546:149104

    Article  CAS  Google Scholar 

  18. Yong Y, Cui H, Zhou Q, Su X, Kuang Y, Li X (2019) C2N Monolayer as NH3 and NO sensors: a DFT study. Appl Surf Sci 487:488–495

    Article  CAS  Google Scholar 

  19. Prasongkit J, Amorim RG, Chakraborty S, Ahuja R, Scheicher RH, Amornkitbamrung V (2015) Highly sensitive and selective gas detection based on silicene. J Phys Chem C 119:16934–16940

    Article  CAS  Google Scholar 

  20. Xia W, Hu W, Li Z, Yang J (2014) A first-principles study of gas adsorption on germanene. Phys Chem Chem Phys 16:22495–22498

    Article  CAS  PubMed  Google Scholar 

  21. Chen X-P, Wang L-M, Sun X, Meng R-S, Xiao J, Ye H-Y, Zhang G-Q (2017) Sulfur dioxide and nitrogen dioxide gas sensor based on arsenene: a first-principle study. IEEE Electron Device Lett 38:661–664

    Article  CAS  Google Scholar 

  22. Zhang L, Yan Q, Du S, Su G, Gao H-J (2012) Boron sheet adsorbed on metal surfaces: structures and electronic properties. J Phys Chem C 116:18202–18206

    Article  CAS  Google Scholar 

  23. Zhu L, Zhao B, Zhang T, Chen G, Yang SA (2019) How is honeycomb borophene stabilized on Al (111)? J Phys Chem C 123:14858–14864

    Article  CAS  Google Scholar 

  24. Kunstmann J, Quandt A (2006) Broad boron sheets and boron nanotubes: an ab initio study of structural, electronic, and mechanical properties. Phys Rev B 74:035413

    Article  Google Scholar 

  25. Lau KC, Pandey R (2007) Stability and electronic properties of atomistically-engineered 2D boron sheets. J Phys Chem C 111:2906–2912

    Article  CAS  Google Scholar 

  26. Evans MH, Joannopoulos J, Pantelides ST (2005) Electronic and mechanical properties of planar and tubular boron structures. Phys Rev B 72:045434

    Article  Google Scholar 

  27. Tang H, Ismail-Beigi S (2007) Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys Rev Lett 99:115501

    Article  PubMed  Google Scholar 

  28. Gao M, Li Q-Z, Yan X-W, Wang J (2017) Prediction of phonon-mediated superconductivity in borophene. Phys Rev B 95:024505

    Article  Google Scholar 

  29. Liu C-C, Jiang H, Yao Y (2011) Low-energy effective hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys Rev B 84:195430

    Article  Google Scholar 

  30. Martínez-Guerra E, Ortíz-Chi F, Curtarolo S, de Coss R (2014) Pressure effects on the electronic structure and superconducting critical temperature of Li2B2. J Phys Condens Matter 26:115701

    Article  PubMed  Google Scholar 

  31. John D, Nharangatt B, Chatanathodi R (2019) Stabilizing honeycomb borophene by metal decoration: a computational study. J Mater Chem C 7:11493–11499

    Article  CAS  Google Scholar 

  32. Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J (2001) Superconductivity at 39 K in magnesium diboride. Nature 410:63–64

    Article  CAS  PubMed  Google Scholar 

  33. Cadeville M (1966) Proprietes Magnetiques Des Diborures De Manganese Et De Chrome: MnB2 Et CrB2. J Phys Chem Solids 27:667–670

    Article  CAS  Google Scholar 

  34. Ma S, Bao K, Tao Q, Xu C, Feng X, Zhu P, Cui T (2016) Investigating robust honeycomb borophenes sandwiching manganese layers in manganese diboride. Inorg Chem 55:11140–11146

    Article  CAS  PubMed  Google Scholar 

  35. Li Q, Zhou D, Zheng W, Ma Y, Chen C (2015) Anomalous stress response of ultrahard WBn compounds. Phys Rev Lett 115:185502

    Article  PubMed  Google Scholar 

  36. Xie S-Y, Li X-B, Tian WQ, Chen N-K, Zhang X-L, Wang Y, Zhang S, Sun H-B (2014) First-principles calculations of a robust two-dimensional boron honeycomb sandwiching a triangular molybdenum layer. Phys Rev B 90:035447

    Article  CAS  Google Scholar 

  37. Aydin S, Simsek M (2009) First-principles calculations of MnB2, TcB2, and ReB2 within the ReB2-Type Structure. Phys Rev B 80:134107

    Article  Google Scholar 

  38. Wu Y, Li H, Hou J (2021) A first-principle study of feb6 monolayer as a potential anode material for Li-Ion and Na-Ion batteries. Comput Mater Sci 190:110273

    Article  CAS  Google Scholar 

  39. Zhang H, Li Y, Hou J, Tu K, Chen Z (2016) FeB6 monolayers: the graphene-like material with hypercoordinate transition metal. J Am Chem Soc 138:5644–5651

    Article  CAS  PubMed  Google Scholar 

  40. Gao D, Rao S, Li Y, Liu N, Wang D (2023) Enhancement of CO adsorption energy on defective graphene-supported Cu13 cluster and prediction with an induction energy model. Appl Surf Sci 615:156368

    Article  CAS  Google Scholar 

  41. Lei M, Ren H, Luo S, Yang W, Gao Z (2022) Analysis of the adsorption characteristics of gasification pollutants (HCl, COS, H2S, NH3 and HCN) on Ti-anchored graphene substrates. Surf Sci 725:122148

    Article  CAS  Google Scholar 

  42. Kucuk H (2022) The small gas activities on different number of nitrogen atom doping to cobalt embedded graphene. Comput Theor Chem 1213:113731

    Article  CAS  Google Scholar 

  43. Zhou M, Lu Y-H, Cai Y-Q, Zhang C, Feng Y-P (2011) Adsorption of gas molecules on transition metal embedded graphene: a search for high-performance graphene-based catalysts and gas sensors. Nanotech 22:385502

    Article  Google Scholar 

  44. Zhou Q, Su X, Ju W, Yong Y, Li X, Fu Z, Wang C (2017) Adsorption of H2S on graphane decorated with Fe, Co and Cu: a DFT study. RSC Adv 7:31457–31465

    Article  CAS  Google Scholar 

  45. Xia X, Guo S, Xu L, Guo T, Wu Z, Zhang SJIEDL (2021) Sensing performance of SO2, SO3 and NO2 gas molecules on 2D pentagonal PdSe2: a first-principle study. IEEE Electron Device Lett 42:573–576

    Article  CAS  Google Scholar 

  46. Delley B (2000) From molecules to solids with the Dmol3 approach. J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  47. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  48. Grimme S (2006) Semiempirical Gga-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  PubMed  Google Scholar 

  49. Cui H, Zhang X, Chen D (2018) Borophene: a promising adsorbent material with strong ability and capacity for SO2 adsorption. Appl Physics A 124:636

    Article  Google Scholar 

  50. Xie T, Wang P, Tian C, Zhao G, Jia J, He C, Zhao C, Wu H (2022) The investigation of adsorption behavior of gas molecules on FeN3-doped graphene. J Sens 2022:1–8

    Google Scholar 

  51. Rouquerol J, Rouquerol F, Llewellyn P, Maurin G, Sing KS (2013) Adsorption by powders and porous solids: principles, methodology and applications. Academic press

    Google Scholar 

  52. García EV, Carbajal-Franco G, López-Galán OA (2022) DFT transition state study of the catalyzed oxidation of methane on SnO2 surfaces. Catal Today 392-393:41–48

    Article  Google Scholar 

  53. Otyepková E, Lazar P, Luxa J, Berka K, Čépe K, Sofer Z, Pumera M, Otyepka M (2017) Surface properties of MoS2 probed by inverse gas chromatography and their impact on electrocatalytic properties. Nanoscale 9:19236–19244

    Article  PubMed  PubMed Central  Google Scholar 

  54. Weiss K, Phillips JM (1976) Calculated specific surface energy of molybdenite (MoS2). Phys Rev B 14:5392

    Article  CAS  Google Scholar 

  55. Opoku F, Akoto O, Asare-Donkor NK, Adimado AA (2021) Defect-engineered two-dimensional layered gallium sulphide molecular gas sensors with ultrahigh selectivity and sensitivity. Appl Surf Sci 562:150188

    Article  CAS  Google Scholar 

  56. Lang N, Kohn W (1971) Theory of metal surfaces: work function. Phys Rev B 3:1215

    Article  Google Scholar 

  57. Zala VB, Shukla RS, Bhuyan PD, Gupta SK, Gajjar P (2021) Highly selective and reversible 2D PtX2 (X= P, As) hazardous gas sensors: ab-initio study. Appl Surf Sci 563:150391

    Article  CAS  Google Scholar 

  58. Wang M, Tan G, Ren H, Xia A, Liu Y (2019) Direct Double Z-Scheme O-g-C3N4/Zn2SnO4N/ZnO ternary heterojunction photocatalyst with enhanced visible photocatalytic activity. Appl Surf Sci 492:690–702

    Article  CAS  Google Scholar 

  59. Fahad HM, Gupta N, Han R, Desai SB, Javey A (2018) Highly sensitive bulk silicon chemical sensors with sub-5 nm thin charge inversion layers. ACS Nano 12:2948–2954

    Article  CAS  PubMed  Google Scholar 

  60. Pitt IG, Gilbert RG, Ryan KR (1994) Application of transition-state theory to gas-surface reactions: barrierless adsorption on clean surfaces. J Phys Chem 98:13001–13010

    Article  CAS  Google Scholar 

  61. Brown Jr WF (1963) Thermal fluctuations of a single-domain particle. Phys Rev 130:1677

    Article  Google Scholar 

  62. Néel L (1949) In Théorie Du Traînage Magnétique Des Ferromagnétiques En Grains Fins Avec Application Aux Terres Cuites. Annales de géophysique:99–136

  63. Peng S, Cho K, Qi P, Dai H (2004) Ab initio study of CNT NO2 gas sensor. Chem Phys Lett 387:271–276

    Article  CAS  Google Scholar 

  64. Zapata Trujillo JC, McKemmish LK (2022) Vibfreq1295: A new database for vibrational frequency calculations. Chem A Eur J 126:4100–4122

    CAS  Google Scholar 

  65. Babariya B, Raval D, Gupta SK, Gajjar P (2022) Selective and sensitive toxic gas-sensing mechanism in a 2D Janus Mosse monolayer. Phys Chem Chem Phys 24:15292–15304

    Article  CAS  PubMed  Google Scholar 

  66. Gaiardo A, Bellutti P, Fabbri B, Gherardi S, Giberti A, Guidi V, Landini N, Malagù C, Pepponi G, Valt M (2016) Chemoresistive gas sensor based on sic thick film: possible distinctive sensing properties between H2S and SO2. Procedia Eng 168:276–279

    Article  CAS  Google Scholar 

  67. Dong M, Zhang C, Ren M, Albarracín R, Ye R (2017) Electrochemical and Infrared Absorption Spectroscopy Detection of SF6 Decomposition Products. Sensors 17:2627

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is financially supported by Jilin Students’ Platform for innovation and entrepreneurship training program (2022030).

Author information

Authors and Affiliations

Authors

Contributions

Chao Wang and Yuhang Zhang: Wrote the main manuscript text and prepared original draft; Rongfang Huang: prepared the Figs. 17; Xueqian Wei, Xiaoxiao Zhao, Shiyi Geng and Yuxin Xue: Data processing; Jianhua Hou and Qian Duan: Supervision.

Corresponding authors

Correspondence to Jianhua Hou or Qian Duan.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhang, Y., Huang, R. et al. First-principles study on α/β/γ-FeB6 monolayers as potential gas sensor for H2S and SO2. J Mol Model 29, 314 (2023). https://doi.org/10.1007/s00894-023-05713-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05713-2

Keywords

Navigation