Skip to main content
Log in

Electronic structure and reactivity indexes of cobalt clusters, both pure and mixed with NO and \(N_{2}O\) (\(Co_{n}^{q}\), \(q=0,1\) and \(n= 4-9\))

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Among the most popular motivations for environmental scientists is improving materials that could be useful to fight or avoid pollution. This work shows a study of neutral and cationic cobalt clusters from 4 to 9 atoms (\(Co^{q}_{n}\), q = 0,1 and n = 4–9) to model their separate interaction with contaminant nitric and nitrous oxides. This study is within the framework of the density functional theory in the Kohn-Sham scheme by using BPW91 functional and 6-311G and 6-31G* basis sets to calculate global and local reactivity indexes. The effect of spin multiplicity is also determined. Results on the geometries of pure cobalt clusters agree with previously reported structures. Global minimum energy structures showed a marked preference towards the interaction of nitric and nitrous oxide molecules with cobalt clusters through chemisorptive dissociation, with the dissociation of the corresponding nitrogen oxide. Reactivity indexes reveal an even-odd alternate, which is related to electron counts. Moreover, the chemical potential is lowering after interaction with nitrogen oxides. The Fukui function illustrates the reactive zones with a high probability of chemisorption of more nitrogen oxide molecules.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and material

The raw data required to reproduce these findings cannot be shared at this time due to technical or time limitations. They can be obtained via email to the corresponding author. However, final structures and energies are included as supplementary material.

Code availability

Not applicable

Supplementary information

Authors reporting cartesian coordinates and energies for all optimized geometries of \(Co_{n}^{q}\), \(Co_{n}^{q}(NO)\), and \(Co_{n}^{q}(N_{2}O)\) (\(q=0,1\) and \(n= 4-9\)).

References

  1. Stocker TF, Qin D, Plattner G-K, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) IPCC, 2013: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom, and New York, NY (USA)

    Google Scholar 

  2. Mussati DC, Srivastava R, Hemmer PM, Strait R, Pechan EH (2000) Section \(4\). \(NO_{x}\) Controls. Section \(4.2\)\(NO_{x}\) Post-combustion selective catalytic reduction contents. U. S. Environmental Protection Agency, 2–59. https://doi.org/EPA/452/B-02-001

  3. Sorrels JL, Randall DD, Schaffner KS, Fry CR (2016). Selective catalytic reduction. EPA Air pollution control cost manual. U.S. Environmental Protection Agency. https://www3.epa.gov/ttn/ecas/docs/SCRCostManualchapter7thEdition_2016.pd

  4. Piskorz W, Zasada F, Stelmachowski P, Kotarba A, Sojka Z (2008) Descomposition of \(N_{2}O\) over surface of cobalt spinel: A dft account of reactivity experiments. Catalysis Today 137(2):418–422. https://doi.org/10.1016/j.cattod.2008.02.027

  5. Kondow T, Mafuné F (2003) Experimental and theoretical studies of clusters. World Scientific Publishing Co. Pte. Ltd, USA

    Book  Google Scholar 

  6. Kawazoe Y, Kondow T, Ohno K (2002) Clusters and nanomaterials. Theory and experiment. Springer, USA

    Book  Google Scholar 

  7. Knickelbein MB (1999) Reactions of transition metal clusters with small molecules. Annual Review of Physical Chemistry 50(1):79–115. https://doi.org/10.1146/annurev.physchem.50.1.79

    Article  CAS  PubMed  Google Scholar 

  8. March NH (1986) Chemical bonds outside metal surfaces. Plenum: New York. Boston, MA : Springer US, NY (USA)

  9. Blanchet C, Duarte HA, Salahub DR (1997) Density functional study of mononitrosyls of first-row transition-metal atoms. The Journal of Chemical Physics 106(21):8778–8787. https://doi.org/10.1063/1.473938

    Article  CAS  Google Scholar 

  10. Ford MS, Anderson ML, Barrow MP, Woodruff DP, Drewello T, Derrick PJ, Mackenzie SR (2005) Reactions of nitric oxide on \(Rh^{+}_{6}\) clusters: abundant chemistry and evidence of structural isomers. Physical Chemistry Chemical Physics 7(5):975–980. https://doi.org/10.1039/B415414B

  11. Rodríguez-Kessler PL, Rodríguez-Domínguez AR (2015) \(N_{2}O\) dissociation on small \(Rh\) clusters: A density functional study. Computational Materials Science 97(c):32–35. https://doi.org/10.1016/j.commatsci.2014.09.044

  12. Rodríguez-Kessler PL, Pan S, Florez E, Cabellos JL, Merino G (2017) Structural evolution of the rhodium-doped silver clusters \(Ag_{n}Rh\) (\(n \le\) 15) and their reactivity toward \(NO\). The Journal of Physical Chemistry C 121(35):19420–19427. https://doi.org/10.1021/acs.jpcc.7b05048

  13. Klaassen JJ, Jacobson DB (1988) Dissociative versus molecular chemisorption of nitric oxide on small bare cationic cobalt clusters in the gas phase. Journal of the American Chemical Society 110(3):974–976. https://doi.org/10.1021/ja00211a052

    Article  CAS  Google Scholar 

  14. Klaassen JJ, Jacobson DB (1989) Facile oxygen exchange by cobalt cluster oxide ions with water-oxygen-18 in gas phase. Inorganic Chemistry 28(11):2022–2024. https://doi.org/10.1021/ic003110a003

    Article  CAS  Google Scholar 

  15. Anderson ML, Lacz A, Drewello T, Derrick PJ, Woodruff DP, Mackenzie SR (2009) The chemistry of nitrogen oxides on small size-selected cobalt clusters \(Co^{+}_{n}\). The Journal of Chemical Physics 130(6):064305. https://doi.org/10.1063/1.3075583

  16. Martínez A, Jamorski C, Medina G, Salahub DR (1998) Molecular versus dissociative chemisorption of nitric oxide on \(Co_{2}\) and \(Co_{3}\) (neutral and cationic). A density functional study. The Journal of Physical Chemistry A 102(24):4643–4651. https://doi.org/10.1021/jp980393c

  17. Hanmura T, Ichihashi M, Okawa R, Kondow T (2009) Size-dependent reactivity of cobalt cluster ions with nitrogen monoxide: Competititon between chemisorption and descomposition of \(NO\). International Journal of Mass Spectrometry 280(1):184–189. https://doi.org/10.1016/j.ijms.2008.08.024

  18. Koyama K, Kudoh S, Miyajima K, Mafuné F (2015) Thermal desorption spectroscopy study of the adsorption and reduction of \(NO\) by cobalt cluster ions under thermal equilibrium conditions at 300 k. The Journal of Physical Chemistry A 119(37):9573–9580. https://doi.org/10.1021/acs.jpca.5b05320

  19. Alexandrova AN, Boldyrev AI (2005) Search for the \(Li^{0/+1/-1}_{n}\) (\(n\) = 5–7). Lowest-energy structures using the ab initio Gradient Embedded Genetic Algorithm (GEGA). Elucidation of the chemical bonding in the lithium clusters. Journal of Chemical Theory and Computation 1(4):566–580. https://doi.org/10.1021/ct050093g

  20. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of Physics 58(8):1200–1211. https://doi.org/10.1139/p80-159

    Article  CAS  Google Scholar 

  21. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms \(Sc\) to \(Hg\). The Journal of Chemical Physics 82(1):270–283. https://doi.org/10.1063/1.448799

  22. Dunning Jr, TH, J, HP (1977) In modern theoretical chemistry. Ed. H. F. Schaefer III, (Plenum, New York, 1-28)

  23. Guzmán-Ramírez G, Robles J, Vega A, Aguilera-Granja F (2011) Stability, structural, and magnetic phase diagrams of ternary ferromagnetic 3d-transition-metal clusters with five and six atoms. The Journal of Chemical Physics 134(5):054101. https://doi.org/10.1063/1.3533954

    Article  CAS  PubMed  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, O Kitao YH, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Rothers EB, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Yengar SSI, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, In RLM, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, O, Foresman, JB, Ortiz, JV, Cioslowski, J, Fox, DJ (2009) Gaussian09 Revision C01 gaussian Inc Wallingford CT

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Ski VGZ, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Shida MI, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian16 Revision C01 Gaussian Inc Wallingford CT

  26. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A 38(6):3098–3100. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  27. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Physical Review B 33(12):8822–8824. https://doi.org/10.1103/PhysRevB.33.8822

    Article  CAS  Google Scholar 

  28. Wang Y, Perdew JP (1991) Spin scaling of the electron-gas correlation energy in the high-density limit. Physical Review B 43(11):8911–8916. https://doi.org/10.1103/PhysRevB.43.8911

    Article  CAS  Google Scholar 

  29. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B 45(23):13244–13249. https://doi.org/10.1103/PhysRevB.45.13244

    Article  CAS  Google Scholar 

  30. Zhao Y, Schultz NE, Truhlar DG (2005) Exchange-correlation functional with broad accuracy for metallic and nonmetallic compunds, kinetics, and noncovalent interactions. The Journal of Chemical Physics 123(16):161103. https://doi.org/10.1063/1.2126975

    Article  CAS  PubMed  Google Scholar 

  31. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. Journal of Chemical Theory and Computation 2(2):364–382. https://doi.org/10.1021/ct0502763

    Article  CAS  PubMed  Google Scholar 

  32. Zhao Y, Truhlar DG (2008) The M06 suit of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interaction, excited states, and transition elements: two new functionals and systematic testing of four m06-class functionals and 12 other functionals. Theoretical Chemistry Accounts 120(1–3):215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  33. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interaction. The Journal of Chemical Physics 125(19):194101. https://doi.org/10.1063/1.2370993

    Article  CAS  PubMed  Google Scholar 

  34. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. The Journal of Chemical Physics 72(1):650–654. https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  35. Godbout N, Salahub D, Andzelm J, Wimmer E (1992) Optimization of gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Canadian Journal of Chemistry 70(2):560–571. https://doi.org/10.1139/v92-079

    Article  CAS  Google Scholar 

  36. Sosa C, Andzelm J, Elkin BC, Wimmer E, Dobbs KD, Dixon DA (1992) A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds. The Journal of Physical Chemistry 96(16):6630–36. https://doi.org/10.1021/j100195a022

    Article  CAS  Google Scholar 

  37. Fuentealba P, Preuss H, Stoll H, Szentpály LV (1982) A proper account of core-polarization with pseudopotentials: single valence-electron alkali compounds. Chemical Physics Letters 89(5):418–422. https://doi.org/10.1016/0009-2614(82)80012-2

    Article  CAS  Google Scholar 

  38. Morse MD (1986) Clusters of transition-metal atoms. Chemical Reviews 86(6):1049–1109. https://doi.org/10.1021/cr00076a005

    Article  CAS  Google Scholar 

  39. Kant A, Strauss B (1964) Dissociation energies of diatomic molecules of the transition elements. II. Titanium, chromium, manganese, and cobalt. The Journal of Chemical Physics 41(2):3806–3808. https://doi.org/10.1063/1.1725817

    Article  CAS  Google Scholar 

  40. Gutsev GL, Bauschlicher CW (2003) Electron affinities, ionization energies, and fragmentation energies of \(Fe_{n}\) clusters (\(n\)=2-6): A density functional theory study. The Journal of Physical Chemistry A 107(36):7013–7023. https://doi.org/10.1021/jp030288p

  41. Rassolov VA, Pople JA, Ratner MA, Windus TL (1998) 6–31g* basis set for atoms \(K\) through \(Zn\). The Journal of Chemical Physics 109(4):1223–1229. https://doi.org/10.1063/1.476673

  42. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chimica Acta 28(3):213–222. https://doi.org/10.1007/BF00533485

    Article  CAS  Google Scholar 

  43. Parr RG, Weitao Y (1994) Density-functional theory of atoms and molecules. Oxford University Press, USA

    Google Scholar 

  44. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: The density functional viewpoint. The Journal of Chemical Physics 68(8):3801–3807. https://doi.org/10.1063/1.436185

    Article  CAS  Google Scholar 

  45. Iczkowski RP, Margrave JL (1961) Electronegativity. Journal of the American Chemical Society 83(17):3547–3551. https://doi.org/10.1021/ja01478a001

    Article  CAS  Google Scholar 

  46. Gázquez JL, Cedillo A, Vela A (2007) Electrodonating and electroaccepting powers. The Journal of Physical Chemistry 111(10):1966–1970. https://doi.org/10.1021/jp065459f

    Article  CAS  PubMed  Google Scholar 

  47. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society 105(26):7512–7516. https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  48. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. Journal of the American Chemical Society 121(9):1922–1924. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  49. Sharma V, Pahuja A, Srivastava S (2016) Spin-polarised DFT study of cobalt-doped gallium clusters. Molecular Physics 114(9):1472–1477. https://doi.org/10.1080/00268976.2015.1136004

    Article  CAS  Google Scholar 

  50. Zhan L, Chen JZY, Liu W-K, Lai SK (2005) Asynchronous multicanonical basin hopping method and its applicationto cobalt nanoclusters. The Journal of Chemical Physics 122(24):244707. https://doi.org/10.1063/1.1940028

    Article  CAS  PubMed  Google Scholar 

  51. Rodríguez-Kessler PL, Rodríguez-Domínguez AR (2015) Stability of \(Ni\) clusters and the adsorption of \(CH_{4}\): First-principles calculations. The Journal of Physical Chemistry C 119(22):12378–12384. https://doi.org/10.1021/acs.jpcc.5b01738

  52. Fan HJ, Liu CW, Liao MS (1997) Geometry, electronic structure and magnetism of small \(Co_{n}\) (\(n\)= 2–8) clusters. Chemical Physics Letters 273(5):353–359. https://doi.org/10.1016/S0009-2614(97)00534-4

  53. Rodríguez-López JL, Aguilera-Granja F, Michaelian K, Vega A (2003) Structure and magnetism of cobalt clusters. Physical Review B 67(17):174413. https://doi.org/10.1103/PhysRevB.67.174413

    Article  CAS  Google Scholar 

  54. Datta S, Kabir M, Ganguly S, Sanyal B, Saha-Dasgupta T, Mookerjee A (2007) Structure, bonding, and magnetism of cobalt clusters from first-principles calculations. Phys Rev B 76(1):014429. https://doi.org/10.1103/PhysRevB.76.014429

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JGFM acknowledges the National Council of Science and Technology (CONACYT) for the doctoral fellowship with number 502772. The authors also acknowledge the University of Guadalajara for financial support. The authors would like to acknowledge the computational resources and technical support offered by the Data Analysis and Supercomputing Center (CADS, for its acronym in Spanish) of the University of Guadalajara through Leo Atrox supercomputer.

Funding

JGFM received from the National Council of Science and Technology (CONACYT) the doctoral fellowship with number 502772. The authors also received financial support from the University of Guadalajara.

Author information

Authors and Affiliations

Authors

Contributions

JGFM performed research, wrote the manuscript, and analyzed data. DAHV assisted with figures and analyzed data. GRG analyzed data. RFM reviewed the manuscript. JGRZ reviewed the manuscript, analyzed data, and assisted with figures and tables. FJTR designed research, wrote the manuscript, and analyzed data.

Corresponding author

Correspondence to Francisco J. Tenorio.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 348 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Facio-Muñoz, J., Hernández-Velázquez, D.A., Guzmán-Ramírez, G. et al. Electronic structure and reactivity indexes of cobalt clusters, both pure and mixed with NO and \(N_{2}O\) (\(Co_{n}^{q}\), \(q=0,1\) and \(n= 4-9\)). J Mol Model 28, 197 (2022). https://doi.org/10.1007/s00894-022-05165-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05165-0

Keywords

Navigation