Skip to main content

Advertisement

Log in

Revisiting the hydroxylation phenomenon of SiO2: a study through “hard-hard” and “soft–soft” interactions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Surface hydroxylation has been extensively studied over the years for a variety of applications, and studies involving hydroxylation of different silica surfaces are still carried out due to the interesting properties obtained from those modified surfaces. Although a number of theoretical studies have been employed to evaluate details on the hydroxylation phenomenon on silica (SiO2) surfaces, most of these studies are based on computationally expensive models commonly based on extended systems. In order to circumvent such an aspect, here we present a low-cost theoretical study on the SiO2 hydroxylation process aiming to evaluate aspects associated with water-SiO2 interaction. Details about local reactivity, chemical softness, and electrostatic potential were evaluated for SiO2 model substrates in the framework of the density functional theory (DFT) using a molecular approach. The obtained results from this new and promising approach were validated and complemented by fully atomistic reactive molecular dynamics (FARMD) simulations. Furthermore, the implemented approach proves to be a powerful tool that is not restricted to the study of hydroxylation, opening a promising route for low computational cost to analyze passivation and anchoring processes on a variety of oxide surfaces.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Pujari SP, Scheres L, Marcelis ATM, Zuilhof H (2014) Covalent surface modification of oxide surfaces. Angew Chem Int Ed 53:6322–6356. https://doi.org/10.1002/anie.201306709

    Article  CAS  Google Scholar 

  2. Armistead CG, Tyler AJ, Hambleton FH et al (1969) Surface hydroxylation of silica. J Phys Chem 73:3947–3953. https://doi.org/10.1021/j100845a065

    Article  CAS  Google Scholar 

  3. Hanawa T (2011) A comprehensive review of techniques for biofunctionalization of titanium. J Periodontal Implant Sci 41:263–272. https://doi.org/10.5051/jpis.2011.41.6.263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tamura H, Mita K, Tanaka A, Ito M (2001) Mechanism of hydroxylation of metal oxide surfaces. J Colloid Interface Sci 243:202–207. https://doi.org/10.1006/jcis.2001.7864

    Article  CAS  Google Scholar 

  5. Asakuma N, Fukui T, Toki M et al (2003) Photoinduced hydroxylation at ZnO surface. Thin Solid Films 445:284–287. https://doi.org/10.1016/S0040-6090(03)01162-3

    Article  CAS  Google Scholar 

  6. Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44:8269. https://doi.org/10.1143/JJAP.44.8269

    Article  CAS  Google Scholar 

  7. Lohbauer U, Zipperle M, Rischka K et al (2008) Hydroxylation of dental zirconia surfaces: characterization and bonding potential. J Biomed Mater Res B Appl Biomater 87B:461–467. https://doi.org/10.1002/jbm.b.31126

    Article  CAS  Google Scholar 

  8. Sneh O, George SM (1995) Thermal stability of hydroxyl groups on a well-defined silica Surface. J Phys Chem 99:4639–4647. https://doi.org/10.1021/j100013a039

    Article  CAS  Google Scholar 

  9. Ide MS, Davis RJ (2014) The important role of hydroxyl on oxidation catalysis by gold nanoparticles. Acc Chem Res 47:825–833. https://doi.org/10.1021/ar4001907

    Article  CAS  PubMed  Google Scholar 

  10. Robert D, Malato S (2002) Solar photocatalysis: a clean process for water detoxification. Sci Total Environ 291:85–97. https://doi.org/10.1016/s0048-9697(01)01094-4

    Article  CAS  PubMed  Google Scholar 

  11. Gentleman MM, Ruud JA (2010) Role of hydroxyls in oxide wettability. Langmuir 26:1408–1411. https://doi.org/10.1021/la903029c

    Article  CAS  PubMed  Google Scholar 

  12. Gomes OP, Azevedo Neto NF, Bronze-Uhle ES et al (2019) 3-Mercaptopropionic acid functionalization of titanium dioxide thin films. Mater Chem Phys 223:32–38. https://doi.org/10.1016/j.matchemphys.2018.10.041

    Article  CAS  Google Scholar 

  13. Gomes OP, Feltran GS, Ferreira MR et al (2020) A novel BSA immobilizing manner on modified titanium surface ameliorates osteoblast performance. Colloids Surf B Biointerfaces 190:110888. https://doi.org/10.1016/j.colsurfb.2020.110888

    Article  CAS  PubMed  Google Scholar 

  14. Du J, Cormack AN (2005) Molecular dynamics simulation of the structure and hydroxylation of silica glass surfaces. J Am Ceram Soc 88:2532–2539. https://doi.org/10.1111/j.1551-2916.2005.00352.x

    Article  CAS  Google Scholar 

  15. Rimsza JM, Du J (2015) Ab initio molecular dynamics simulations of the hydroxylation of nanoporous silica. J Am Ceram Soc 98:3748–3757. https://doi.org/10.1111/jace.13731

    Article  CAS  Google Scholar 

  16. Guan K (2005) Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films. Surf Coat Technol 191:155–160. https://doi.org/10.1016/j.surfcoat.2004.02.022

    Article  CAS  Google Scholar 

  17. Bunker BC (1994) Molecular mechanisms for corrosion of silica and silicate glasses. J Non-Cryst Solids 179:300–308. https://doi.org/10.1016/0022-3093(94)90708-0

    Article  CAS  Google Scholar 

  18. Fogarty JC, Aktulga HM, Grama AY et al (2010) A reactive molecular dynamics simulation of the silica-water interface. J Chem Phys 132:174704. https://doi.org/10.1063/1.3407433

    Article  CAS  PubMed  Google Scholar 

  19. Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. Wiley, New York

    Google Scholar 

  20. Kurkjian CR, Krause JT, Paek UC (1982) Tensile strength characteristics of “perfect” silica fibers. J Phys Colloques 43:585–586. https://doi.org/10.1051/jphyscol:19829115

    Article  Google Scholar 

  21. Gaigeot M-P, Sprik M, Sulpizi M (2012) Oxide/water interfaces: how the surface chemistry modifies interfacial water properties. J Phys Condens Matter 24:124106. https://doi.org/10.1088/0953-8984/24/12/124106

    Article  CAS  PubMed  Google Scholar 

  22. Sulpizi M, Gaigeot M-P, Sprik M (2012) The silica–water interface: how the silanols determine the surface acidity and modulate the water properties. J Chem Theory Comput 8:1037–1047. https://doi.org/10.1021/ct2007154

    Article  CAS  PubMed  Google Scholar 

  23. He Y, Cao C, Trickey SB, Cheng H-P (2008) Predictive first-principles simulations of strain-induced phenomena at water-silica nanotube interfaces. J Chem Phys 129:011101. https://doi.org/10.1063/1.2953457

    Article  CAS  PubMed  Google Scholar 

  24. Michalske TA, Freiman SW (1982) A molecular interpretation of stress corrosion in silica. Nature 295:511–512. https://doi.org/10.1038/295511a0

    Article  CAS  Google Scholar 

  25. Gierada M, Petit I, Handzlik J, Tielens F (2016) Hydration in silica based mesoporous materials: a DFT model. Phys Chem Chem Phys 18:32962–32972. https://doi.org/10.1039/C6CP05460A

    Article  CAS  PubMed  Google Scholar 

  26. Hair ML, Hertl W (1969) Adsorption on hydroxylated silica surfaces. J Phys Chem 73:4269–4276. https://doi.org/10.1021/j100846a039

    Article  CAS  Google Scholar 

  27. Tielens F, Gierada M, Handzlik J, Calatayud M (2020) Characterization of amorphous silica based catalysts using DFT computational methods. Catal Today 354:3–18. https://doi.org/10.1016/j.cattod.2019.03.062

    Article  CAS  Google Scholar 

  28. Yeon J, van Duin ACT (2016) ReaxFF molecular dynamics simulations of hydroxylation kinetics for amorphous and nano-silica structure, and its relations with atomic strain energy. J Phys Chem C 120:305–317. https://doi.org/10.1021/acs.jpcc.5b09784

    Article  CAS  Google Scholar 

  29. Zhdanov SP, Kosheleva LS, Titova TI (1987) IR study of hydroxylated silica. Langmuir 3:960–967. https://doi.org/10.1021/la00078a014

    Article  CAS  Google Scholar 

  30. Mankad V, Jha PK (2016) First-principles study of water adsorption on α-SiO2 [110] surface. AIP Adv 6:085001. https://doi.org/10.1063/1.4960455

    Article  CAS  Google Scholar 

  31. Nayak SK, Rao BK, Khanna SN, Jena P (1998) Atomic and electronic structure of neutral and charged SinOm clusters. J Chem Phys 109:1245–1250. https://doi.org/10.1063/1.476675

    Article  CAS  Google Scholar 

  32. Allouche A-R (2011) Gabedit—A graphical user interface for computational chemistry softwares. J Comput Chem 32:174–182. https://doi.org/10.1002/jcc.21600

    Article  CAS  PubMed  Google Scholar 

  33. Schaftenaar G, Noordik JH (2000) Molden: a pre- and post-processing program for molecular and electronic structures*. J Comput Aided Mol Des 14:123–134. https://doi.org/10.1023/A:1008193805436

    Article  CAS  PubMed  Google Scholar 

  34. Keith TA, Millam JM (2016) GaussView. Semichen Inc., Shawnee Mission, KS

    Google Scholar 

  35. Stewart JJP (2016) MOPAC2016. Stewart computational chemistry, Colorado Springs, CO, USA. http://openmopac.net/

  36. Frisch MJ, Trucks GW, Schlegel HB et al (2016) Gaussian 16. Gaussian Inc, Wallingford CT

    Google Scholar 

  37. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  38. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  39. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  40. Vosko SH, Wilk L, Nusair M (2011) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys. https://doi.org/10.1139/p80-159

    Article  Google Scholar 

  41. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  42. Gałyńska M, Persson P (2014) Chapter Eight - Material Dependence of Water Interactions with Metal Oxide Nanoparticles: TiO2, SiO2, GeO2, and SnO2. In: Sabin JR (ed) Advances in Quantum Chemistry. Academic Press, pp 303–332. https://doi.org/10.1016/B978-0-12-800345-9.00008-8

  43. Gomes OP, Batagin-Neto A, Lisboa-Filho PN (2021) The evaluation of anchoring processes and chemical stability of zwitterionic molecules via local reactivity indexes. Comput Mater Sci 193:110418. https://doi.org/10.1016/j.commatsci.2021.110418

    Article  CAS  Google Scholar 

  44. Madhan Kumar A, Latthe SS, Sudhagar P et al (2015) In-situ synthesis of hydrophobic SiO2-PMMA composite for surface protective coatings: experimental and quantum chemical analysis. Polymer 77:79–86. https://doi.org/10.1016/j.polymer.2015.09.030

    Article  CAS  Google Scholar 

  45. Martínez JJ, Silva L, Rojas HA et al (2017) Reductive amination of levulinic acid to different pyrrolidones on Ir/SiO2-SO3H: elucidation of reaction mechanism. Catal Today 296:118–126. https://doi.org/10.1016/j.cattod.2017.08.038

    Article  CAS  Google Scholar 

  46. Yang W, Parr RG (1985) Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci 82:6723–6726. https://doi.org/10.1073/pnas.82.20.6723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weitao Y, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711. https://doi.org/10.1021/ja00279a008

    Article  Google Scholar 

  48. Lascane LG, Oliveira EF, Galvão DS, Batagin-Neto A (2020) Polyfuran-based chemical sensors: identification of promising derivatives via DFT calculations and fully atomistic reactive molecular dynamics. Eur Polym J 141:110085. https://doi.org/10.1016/j.eurpolymj.2020.110085

    Article  CAS  Google Scholar 

  49. Maia RA, Ventorim G, Batagin-Neto A (2019) Reactivity of lignin subunits: the influence of dehydrogenation and formation of dimeric structures. J Mol Model 25:228. https://doi.org/10.1007/s00894-019-4130-4

    Article  CAS  PubMed  Google Scholar 

  50. Plácido A, Bueno J, Barbosa EA et al (2020) The antioxidant peptide salamandrin-I: First bioactive peptide identified from skin secretion of Salamandra Genus (Salamandra salamandra). Biomolecules 10:512. https://doi.org/10.3390/biom10040512

    Article  CAS  PubMed Central  Google Scholar 

  51. Bulat FA, Murray JS, Politzer P (2021) Identifying the most energetic electrons in a molecule: the highest occupied molecular orbital and the average local ionization energy. Comput Theor Chem 1199:113192. https://doi.org/10.1016/j.comptc.2021.113192

    Article  CAS  Google Scholar 

  52. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539. https://doi.org/10.1021/ja00905a001

    Article  CAS  Google Scholar 

  53. Melin J, Aparicio F, Subramanian V et al (2004) Is the fukui function a right descriptor of hard−hard interactions? J Phys Chem A 108:2487–2491. https://doi.org/10.1021/jp037674r

    Article  CAS  Google Scholar 

  54. Chirlian LE, Francl MM (1987) Atomic charges derived from electrostatic potentials: a detailed study. J Comput Chem 8:894–905. https://doi.org/10.1002/jcc.540080616

    Article  CAS  Google Scholar 

  55. Lloyd A, Cornil D, van Duin ACT et al (2016) Development of a ReaxFF potential for Ag/Zn/O and application to Ag deposition on ZnO. Surf Sci 645:67–73. https://doi.org/10.1016/j.susc.2015.11.009

    Article  CAS  Google Scholar 

  56. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

Download references

Funding

This work as supported by the Brazilian National Council for Scientific and Technological Development (CNPq) (grant numbers 448310/2014–7 and 420449/2018–3), the São Paulo Research Foundation (FAPESP) (grant number 2019/09431–0), and the CEPID (grant number 2013/07296–2). This research was also supported by resources supplied by the Center for Scientific Computing (NCC/Grid-UNESP) of São Paulo State University (UNESP).

Author information

Authors and Affiliations

Authors

Contributions

The conception and design of the study were made by Orisson P. Gomes, Augusto Batagin-Neto, and Paulo N. Lisboa-Filho. Material preparation, data collection and analysis were performed by Orisson P. Gomes, João P. C. Rheinheimer, and Leonardo F. G. Dias. The first draft of the manuscript was written by Orisson P. Gomes and all authors commented and revised it critically for important intellectual content on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Orisson P. Gomes.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, O.P., Rheinheimer, J.P.C., Dias, L.F.G. et al. Revisiting the hydroxylation phenomenon of SiO2: a study through “hard-hard” and “soft–soft” interactions. J Mol Model 28, 115 (2022). https://doi.org/10.1007/s00894-022-05107-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05107-w

Keywords

Navigation