Skip to main content
Log in

Comment on “Density functional theory and 3D-RISM-KH molecular theory of solvation studies of CO2 reduction on Cu-, Cu2O-, Fe-, and Fe3O4-based nanocatalysts”

  • Short comments
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Recently, A. Kovalenko et al. reported the computational study of molecular structure and energetics of CO2 + H2 reduction reaction on Cu-, Cu2O-, Fe-, and Fe3O4-based nanocatalysts in the J. Mol. Model., 26, 267 (2020). The authors claim that they developed and tested the multiscale modeling description of this process by combining the periodical boundary condition density functional theory (PBC DFT) and molecular theory of solvation. However, due to inappropriate selection of intermediate strictures, in particular, the unfavorite structure of CO* adsorbed on Cu-, Cu2O-, Fe-, and Fe3O4-nanoparticles, and some inconsistency in preparation of initial structures by DFT approach, there are serious concerns about the correctness and quality of the presented results. In addition, by this comment, I would like to help other researchers working on the development of new catalysts for electrochemical reduction of CO2 to avoid further misunderstandings following this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

OpenMX output files available upon request.

Code availability

OpenMX 3.9, BIOVIA Discovery Studio 2020.

References

  1. Lewis NS, Nocera DG (2006) Proc Natl Acad Sci U S A 103:15729–15735

    Article  CAS  Google Scholar 

  2. Hussain J, Jonsson H, Skulason E (2018) ACS Catal 8:5240–5249

    Article  CAS  Google Scholar 

  3. He J, Wu C, Li Y, Li C (2021) J Mater Chem A 9:19508

    Article  CAS  Google Scholar 

  4. Liu C, Lourenço M, Hedström S, Cavalca F, Diaz-Morales O, Duarte HA, Nilsson A, Pettersson L (2017) J Phys Chem C 121:25010–25017

    Article  CAS  Google Scholar 

  5. Lee J, Kattel S, Jiang Z, Xie Z, Yao S, Tackett B, Xu W, Marinkovic N, Chen J (2019) Nat Comm 10:3724–3731

    Article  Google Scholar 

  6. Ramírez-Valencia L, Bailón-García E, Carrasco-Marín F, Pérez-Cadenas A (2021) Catalysts 11:351–417

    Article  Google Scholar 

  7. Nguyen DL, Kim Y, Hwang YJ, Won DH (2019) Carbon Energy 2:72–98

    Article  Google Scholar 

  8. Nitopi S, Bertheussen E, Scott SB, Liu X, Engstfeld AK, Horch S, Seger B, Stephens IE, Chan K, Hahn C, Nørskov JK, Jaramillo TF, Chorkendorff I (2019) Chem Rev 119:7610–7672

    Article  CAS  Google Scholar 

  9. Maxime Bossche M, Rose-Petruck C, Jónsson H (2021) J Phys Chem C 125:13802–13808

    Article  Google Scholar 

  10. Kortlever R, Shen J, Schouten K, Calle-Vallejo F, Koper M (2015) J Phys Chem Lett 6:4073–4082

    Article  CAS  Google Scholar 

  11. Nie X, Luo W, Janik M, Asthagiri A (2014) 312:108–122

  12. Li C, Kanan MW (2012) J Am Chem Soc 134:7231–7234

    Article  CAS  Google Scholar 

  13. Feaster JT, Shi C, Cave ER, Hatsukade T, Abram DN, Kuhl KP, Hahn C, Nørskov JK, Jaramillo TF (2017) ACS Catal 7:4822–4827

    Article  CAS  Google Scholar 

  14. Choi S, Sang B-I, Hong J, Yoon KJ, Son J-W, Lee J-H, Kim B-K, Kim H (2017) Sci Rep 7:41207–41210

    Article  CAS  Google Scholar 

  15. Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TFJ (2014) Am Chem Soc 136:14107–14113

    Article  CAS  Google Scholar 

  16. Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) Energy Environ Sci 5:7050–7059

    Article  CAS  Google Scholar 

  17. Hatsukade T, Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2014) Phys Chem Chem Phys 16:13814–13819

    Article  CAS  Google Scholar 

  18. Kovalenko A, Neburchilov V (2020) J Mol Model 26:267–276

    Article  CAS  Google Scholar 

  19. Ozaki T, Kino H (2004) Phys Rev B 72(4):045121–045128

    Article  Google Scholar 

  20. Ozaki T User’s manual of OpenMX Ver. 3.9, http://www.openmx-square.org/openmx_man3. (2020)

  21. Davis J, Baletto F, Johnston RL (2015) J Phys Chem A 119(37):9703–9709

    Article  CAS  Google Scholar 

  22. BIOVIA Discovery Studio Dassault Systems, San Diego, CA, USA (2020)

  23. Kovalenko A (2013) Pure Appl Chem 85:159–199

    Article  CAS  Google Scholar 

  24. Nishihara S, Otani M (2017) Phys Rev B 96:115429–115434

    Article  Google Scholar 

  25. Giannozzi P et al (2009) J Phys Condens Matter 21:395502–395520

    Article  Google Scholar 

  26. Tesch R, Kowalski P, Eikerling MH (2021) J Phys Condens Matter 33:444004–444017

    Article  CAS  Google Scholar 

Download references

Funding

National Research Council Canada, Clean Energy Program.

Author information

Authors and Affiliations

Authors

Contributions

Sergey Gusarov: analysis, calculations, writing manuscript.

Corresponding author

Correspondence to Sergey Gusarov.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusarov, S. Comment on “Density functional theory and 3D-RISM-KH molecular theory of solvation studies of CO2 reduction on Cu-, Cu2O-, Fe-, and Fe3O4-based nanocatalysts”. J Mol Model 27, 344 (2021). https://doi.org/10.1007/s00894-021-04974-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04974-z

Keywords

Navigation