Skip to main content
Log in

A new isostructural halogenated chalcone with optical properties

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Chalcones are organic compounds that present a number of properties. This study presents a comprehensive structural description of a new derivative of a chlorine-substituted chalcone in comparison with a bromine chalcone. Also, supermolecule and sum-over-state approach were used to describe the optical properties of these structures regarding the substitution of the bromine by the chlorine atom. In addition, the electrical properties, dipole moment, linear polarizability, and second IDRI hyperpolarizability were calculated. The linear refractive index and the third-order nonlinear macroscopic susceptibility were evaluated as a function of the applied electric field frequency. Furthermore, the quantum mechanics calculations that were implemented at the M06-2X/6-311++G(d,p) level of the theory for these isostructural chalcones indicate that the change in halogen atoms does not cause meaningful changes in their conformation. Finally, we can postulate that side-to-side and the antiparallel interactions are the interaction forces that drive the crystal growth for new isostructural chalcones. The NLO properties showed title compounds that are good candidates for use as NLO materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

CCDC code 2019801 was available at Cambridge Crystallography Data Center.

References

  1. Jumaah M, Kwong HC, Khairuddean M (2019) Crystal structure of ( E ) -3- ( 2-hydroxy-4-methyl-) research communications. Acta Cryst E75:1379–1382

    Google Scholar 

  2. Duarte VS, Custodio JMF, Oliveira GR, Napolitano HB (2019) Benzodioxol group driving supramolecular arrangement of two tri-methoxy chalcones onto Β -secretase 1 enzyme active site. J Braz Chem Soc 30:1916–1926

    CAS  Google Scholar 

  3. Ianelli S, Nardelli M, Giordano C, Coppi L, Restelli A (1992) Enantiomerically pure α-haloketals: structure and conformation of (2’S ,4’R ,5’R )-dimethyl 2’-halo-1’,2’,3’,4’-tetrahydrospiro[1,3-dioxolane-2,1’-naphthalene]-4,5-dicarboxylates (halo = Cl, Br, I). Acta Cryst C48:1722–1727

    CAS  Google Scholar 

  4. Abu N, Ho WY, Yeap SK, Akhtar MN, Abdullah MP, Omar AR, Alitheen NB (2013) The flavokawains: uprising medicinal chalcones. Cancer Cell Int 13:102

  5. Won S-J et al (2005) Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents. Eur J Med Chem 40:103–112

    Article  CAS  PubMed  Google Scholar 

  6. Nowakowska Z (2007) A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem 42:125–137

    Article  CAS  PubMed  Google Scholar 

  7. Vasquez-Martinez YA et al (2019) Antimicrobial, anti-inflammatory and anti-oxidant activities of polyoxygenated chalcones. J Braz Chem Soc 30:286–304

  8. Sulpizio C, Roller A, Giester G, Rompel A (2016) Synthesis , structure , and antioxidant activity. Monatsh Chem Chem Mon. https://doi.org/10.1007/s00706-016-1812-9

  9. Hsieh CT, Chang FR, Tsai YH, Wu YC, Hsieh TJ (2018) 2-Bromo-4'-methoxychalcone and 2-Iodo-4'-methoxychalcone Prevent Progression of Hyperglycemia and Obesity via 5'-Adenosine-Monophosphate-Activated Protein Kinase in Diet-Induced Obese Mice. Int J Mol Sci 19:2763

  10. Shrestha A, Shrestha A, Park P, Lee E (2019) Hydroxyl- and halogen-containing chalcones for the inhibition of LPS-stimulated ROS production in RAW 264.7 macrophages : design, synthesis and structure – activity relationship study. Bull Kor Chem Soc 40:729–734

    Article  CAS  Google Scholar 

  11. Zaini MF, Razak IA, Anis MZ (2019) Crystal structure , Hirshfeld surface analysis and DFT studies of ( E ) -1- ( 4-bromophenyl ) -3- ( 3-fluoro- phenyl ) prop-2-en-1-one research communications. Acta Cryst E75:58–63

    Google Scholar 

  12. Kamanina NV et al (2012) Polyimide-fullerene nanostructured materials for nonlinear optics and solar energy applications. J Mater Sci Mater Electron 23:1538–1542

    Article  CAS  Google Scholar 

  13. Likhomanova SV, Kamanina NV (2016) COANP-fullerenes system for optical modulation. J Phys Conf Ser 741:012146

    Article  Google Scholar 

  14. Lu L et al (2017) Few-layer bismuthene : sonochemical exfoliation , nonlinear optics and applications for ultrafast photonics with enhanced stability. Laser Photonics Rev. https://doi.org/10.1002/lpor.201700221

  15. Salvi R et al (2018) Diagnosing lung cancer using etoposide microparticles labeled with Tc. Artif Cells Nanomed Biotechnol 46:341–345

    Article  CAS  PubMed  Google Scholar 

  16. Luo M et al (2018) M2B10O14F6 ( M = Ca , Sr ): The first two noncentrosymmetric alkaline-earth fluorooxoborates as the promising next- generation deep-ultraviolet nonlinear optical materials M 2 B 10 O 14 F 6 ( M = Ca , Sr ): the first two noncentrosymmetric alka- line-eart. J Am Chem Soc 140:3884–3887

    Article  CAS  PubMed  Google Scholar 

  17. Cui Q (2017) Nonlinear optical spectroscopy of two-dimensional materials Qiannan Cui. University of Kansas.

  18. Shi G et al (2017) Finding the next deep-ultraviolet nonlinear optical material : NH4B4O6F. J Am Chem Soc 139:10645–10648

    Article  CAS  PubMed  Google Scholar 

  19. Castro AN et al (2016) Theoretical study on the third-order nonlinear optical properties and structural characterization of 3-Acetyl-6-Bromocoumarin. Chem Phys Lett 653:122–130

    Article  CAS  Google Scholar 

  20. Kálmán A, Párkányi L, Argay G (1993) Classification of the isostructurality of organic molecules in the crystalline state. Acta Cryst B49:1039–1049

    Article  Google Scholar 

  21. Sheia-Lin N, Patil PS, Razak IA, Fun H-K, Dharmaprakkash SM (2006) 3-(3-Bromophenyl)-1-phenylprop-2-en-1-one. Acta Cryst E62:893–895

    Google Scholar 

  22. Panepucci HC, Donoso JP, Tannus A, Becmann N, Bonagamba TJ (1985) Nuclear magnetic resonance tomography: new images of the body. Sci Today 4:46–56

    Google Scholar 

  23. Skoog DA, Holler FJ, Nieman TA (1998) Principles of instrumental analysis. Saunders College Pub 5

  24. Sheldrick GM (2015) SHELXT – Integrated space-group and crystal- structure determination research papers. Acta Cryst A71:3–8

    Google Scholar 

  25. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71:3–8

    Article  Google Scholar 

  26. Puschmann H, Bourhis LJ, Dolomanov OV, Gildea RJ, Howard JAK (2011) OLEX2 – a complete package for molecular crystallography. Acta Crystallogr Sect A Found Crystallogr 67:C593–C593

    Article  Google Scholar 

  27. Macrae CF et al (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39:453–457

    Article  CAS  Google Scholar 

  28. Tan SL, Jotani MM, Tiekink ERT (2019) Utilizing Hirshfeld surface calculations , non-covalent interaction ( NCI ) plots and the calculation of interaction energies in the analysis of molecular packing research communications. Acta Cryst E75:308–318

    Google Scholar 

  29. Martin AD et al (2015) Hirshfeld surface investigation of structure-directing interactions within dipicolinic acid derivatives. Cryst Growth Des 15:1697–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32

    Article  CAS  Google Scholar 

  31. Spackman MA, Mckinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 4:378–392

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomper DJG (2016) No Title. Gaussian 16, Revision B.01.

  33. Sallum LO et al (2019) Structural studies on dihydropyrimidine derivatives as Mycobacterium tuberculosis coenzyme-A carboxylase inhibitors. Z Kristallogr Cryst Mater 234:657–669

    Article  CAS  Google Scholar 

  34. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  35. Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogenbonded dimers. J Chem Phys 105:11024–11031

    Article  CAS  Google Scholar 

  36. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies . Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  37. Grabowski SJ (2011) What is the covalency of hydrogen bonding ? Chem Rev 111:2597–2625

    Article  CAS  PubMed  Google Scholar 

  38. Lu T, Chen F (2012) Multiwfn : a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  39. Valverde C, Osório FAP, Fonseca TL, Baseia B (2018) DFT study of third-order nonlinear susceptibility of a chalcone crystal. Chem Phys Lett 706:170–174

    Article  CAS  Google Scholar 

  40. Custodio JMF et al (2019) Chalcone as potential nonlinear optical material: a combined theoretical, structural, and spectroscopic study. J Phys Chem C 123:5931–5941

    Article  CAS  Google Scholar 

  41. Murthy PK et al (2019) An analysis of structural and spectroscopic signatures, the reactivity study of synthetized 4,6-dichloro-2-(methylsulfonyl)pyrimidine: A potential third-order nonlinear optical material. J Mol Struct 1186:263–275

    Article  CAS  Google Scholar 

  42. Custodio JMF et al (2019) Using the supermolecule approach to predict the nonlinear optics potential of a novel asymmetric azine. J Phys Chem A 123:153–162

    Article  CAS  PubMed  Google Scholar 

  43. Fonseca TL, Sabino JR, Castro MA, Georg HC (2010) A theoretical investigation of electric properties of L-arginine phosphate monohydrate including environment polarization effects. J Chem Phys 133:144103

    Article  CAS  PubMed  Google Scholar 

  44. Santos OL, Fonseca TL, Sabino JR, Georg HC, Castro MA (2015) Polarization effects on the electric properties of urea and thiourea molecules in solid phase. J Chem Phys 143:234503

    Article  CAS  PubMed  Google Scholar 

  45. Senthil K, Kalainathan S, Kumar AR, Aravindan PG (2014) Investigation of synthesis, crystal structure and third-order NLO properties of a new stilbazolium derivative crystal: a promising material for nonlinear optical devices. RSC Adv 4:56112–56127

    Article  CAS  Google Scholar 

  46. Kongsted J, Osted A, Mikkelsen KV, Christiansen O (2004) Second harmonic generation second hyperpolarizability of water calculated using the combined coupled cluster dielectric continuum or different molecular mechanics methods. J Chem Phys 120:3787–3798

    Article  CAS  PubMed  Google Scholar 

  47. Kleinman DA (1962) Nonlinear dielectric polarization in optical media. Phys Rev 126:1977–1979

    Article  CAS  Google Scholar 

  48. Bishop DM, De Kee DW (1996) The frequency dependence of nonlinear optical processes. J Chem Phys 104:9876–9887

    Article  CAS  Google Scholar 

  49. Orr BJ, Ward JF (1971) Perturbation theory of the non-linear optical polarization of an isolated system. Mol Phys 20:513–526

    Article  CAS  Google Scholar 

  50. Kuzyk MG (2005) Compact sum-over-states expression without dipolar terms for calculating nonlinear susceptibilities. Phys Rev A 72:053819

    Article  Google Scholar 

  51. He Y-Y et al (2019) Spiral graphene nanoribbons with azulene defects as potential nonlinear optical materials. ACS Appl Nano Mater 2:1648–1654

    Article  CAS  Google Scholar 

  52. Champagne B, Kirtman B (2006) Evaluation of alternative sum-over-states expressions for the first hyperpolarizability of push-pull π-conjugated systems. J Chem Phys 125:024101

    Article  Google Scholar 

  53. Pérez-Moreno J, Clays K, Kuzyk MG (2008) A new dipole-free sum-over-states expression for the second hyperpolarizability. J Chem Phys 128:084109

    Article  PubMed  Google Scholar 

  54. Panja N, Ghanty TK, Nandi PK (2010) A sum-over-state scheme of analysis of hyperpolarizabilities and its application to spiroconjugated molecular system. Theor Chem Accounts 126:323–337

    Article  CAS  Google Scholar 

  55. Castet F et al (2013) Design and characterization of molecular nonlinear optical switches. Acc Chem Res 46:2656–2665

    Article  CAS  PubMed  Google Scholar 

  56. Coe JP, Paterson MJ (2014) Approaching exact hyperpolarizabilities via sum-over-states Monte Carlo configuration interaction. J Chem Phys 141:124118

    Article  CAS  PubMed  Google Scholar 

  57. Li W et al (2016) The structural and photophysical properties of multibranched derivatives with curved conjugated aromatic cores. J Mater Chem C 4:6054–6062

    Article  CAS  Google Scholar 

  58. Tonnelé C, Champagne B, Muccioli L, Castet F (2018) Second-order nonlinear optical properties of Stenhouse photoswitches: insights from density functional theory. Phys Chem Chem Phys 20:27658–27667

    Article  PubMed  Google Scholar 

  59. Rtibi E, Abderrabba M, Ayadi S, Champagne B (2019) Theoretical assessment of the second-order nonlinear optical responses of lindqvist-type organoimido polyoxometalates. Inorg Chem 58:11210–11219

    Article  CAS  PubMed  Google Scholar 

  60. Gubler U, Bosshard C (2000) Optical third-harmonic generation of fused silica in gas atmosphere: absolute value of the third-order nonlinear optical susceptibility χ^(3). Phys Rev B 61:10702–10710

    Article  CAS  Google Scholar 

  61. Frisch M et al (2009) Gaussian 09, revision D. 01.

  62. Hathwar VR, Roopan SM, Subashini R, Khan FN, Row TNG (2010) Analysis of Cl … Cl and C – H … Cl intermolecular interactions involving chlorine in substituted 2-chloroquinoline derivatives. J Chem Sci 122:677–685

    Article  CAS  Google Scholar 

  63. Boyd RJ, Matta CF (2007) The Quantum Theory of Atoms in Molecules.

  64. Prabhu SR, Jayarama A, Chandrasekharan K, Upadhyaya V, Ng SW (2017) Synthesis, growth, structural characterization, Hirshfeld analysis and nonlinear optical studies of a methyl substituted chalcone. J Mol Struct 1136:244–252

    Article  CAS  Google Scholar 

  65. Prabhu AN, Upadhyaya V, Jayarama A, Subrahmanya Bhat K (2013) Synthesis, growth and characterization of π conjugated organic nonlinear optical chalcone derivative. Mater Chem Phys 138:179–185

    Article  CAS  Google Scholar 

  66. Prabhu AN, Upadhyaya V, Jayarama A, Bhat KS (2016) Third-order NLO property of thienyl chalcone derivative: physicochemical analysis and crystal structure determination. Mol Cryst Liq Cryst 637:76–86

    Article  CAS  Google Scholar 

  67. Naseema K et al (2010) Synthesis, characterization and studies on the nonlinear optical parameters of hydrazones. Opt Laser Technol 42:741–748

    Article  CAS  Google Scholar 

  68. Ravindra HJ, Chandrashekaran K, Harrison WTA, Dharmaprakash SM (2009) Structure and NLO property relationship in a novel chalcone co-crystal. Appl Phys B Lasers Opt 94:503–511

    Article  CAS  Google Scholar 

  69. D’silva ED, Podagatlapalli GK, Venugopal Rao S, Dharmaprakash SM (2012) Study on third-order nonlinear optical properties of 4-methylsulfanyl chalcone derivatives using picosecond pulses. Mater Res Bull 47:3552–3557

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the High Performance Computing Center of the Universidade Estadual de Goiás (UEG). We also thank the organizers of the American Crystallographic Association 2019 Summer Course in Chemical Crystallography.

Funding

This research was funded by the Brazilian agencies Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Finance Code 001).

Author information

Authors and Affiliations

Authors

Contributions

Introduction: G.S. Ludovico, I.H.S. Barros, L.O. Sallum, R.S. Lima, C. Valverde, A.J. Camargo, B..Baseia, and H.B. Napolitano. Synthesis and crystallization: G.S. Ludovico and R.S. Lima. Crystallographic characterization: G.S. Ludovico, L.O. Sallum, and H.B. Napolitano. Theoretical and computational procedures: L.O. Sallum, A.J. Camargo, and H.B. Napolitano. Nonlinear optical properties: I.H.S. Barros, C. Valverde, and B..Baseia. Results and discussion: G.S. Ludovico, I.H.S. Barros, L.O. Sallum, R.S. Lima, C. Valverde, A.J. Camargo, B..Baseia, and H.B. Napolitano. Conclusions: G.S. Ludovico, I.H.S. Barros, L.O. Sallum, R.S. Lima, C. Valverde, A.J. Camargo, B. Baseia, and H.B. Napolitano.

Corresponding author

Correspondence to Hamilton B. Napolitano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to Topical Collection XX - Brazilian Symposium of Theoretical Chemistry (SBQT2019).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludovico, G.S., Barros, I.H.S., Sallum, L.O. et al. A new isostructural halogenated chalcone with optical properties. J Mol Model 27, 52 (2021). https://doi.org/10.1007/s00894-021-04673-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04673-9

Keywords

Navigation