Skip to main content
Log in

Electronic structure of polythiophene gas sensors for chlorinated analytes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory studies are performed to investigate the response of polythiophene as a sensor for chlorinated gaseous analytes. Interaction of polythiophene with these analytes is studied from both H-side (dipole-dipole) and Cl-side (halogen bonding) of analyte to get the most stable interaction site. Inferences from interaction energy, natural bond orbital, and Mulliken charge analyses are in line with those from geometric analysis. Interaction energies reveal that polythiophene has specificity and selectivity towards chlorine. Interestingly, the halogen bond in PT-Cl2 complexes is stronger than ion-dipole bond in the complexes of polythiophene with other analytes. The sensing of polythiophene towards these analytes is also measured by perturbing the electronic properties including ionization potential, electron affinity, λmax, and H→L gap. The spectroscopic properties (UV absorption spectra) reveal the interaction behavior of polythiophene with these chlorinated analytes. All these parameters including orbital analysis and H→L energies indicate high sensitivity of polythiophene for chlorine.

Interaction of chlorinated gaseous analytes with polythiophene surface

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ates M, Karazehir T, Istanbul ASS (2012) Conducting polymers and their applications. Curr Physicsal Chem 2:224–240. https://doi.org/10.4028/www.scientific.net/MSF.42.207

    Article  CAS  Google Scholar 

  2. Halls JJM, Walsh CA, Greenham NC et al (1995) Efficient photodiodes from interpenetrating polymer networks. Nature 376:498–500

    Article  CAS  Google Scholar 

  3. Kraft A, Grimsdale AC, Holmes AB (1998) Electroluminescent conjugated polymers—seeing polymers in a new light. Angew. Chem. Int. Ed. 37:402–428. https://doi.org/10.1002/(SICI)1521-3773(19980302)37:4<402::AID-ANIE402>3.0.CO;2-9

    Article  Google Scholar 

  4. Hepburn AR, Marshall JM, Maud JM (1991) Novel electrochromic films via anodic oxidation of carbazolyl substituted polysiloxanes. Synth. Met. 43:2935–2938. https://doi.org/10.1016/0379-6779(91)91210-2

    Article  CAS  Google Scholar 

  5. Dubois JC, Sagnes O, Henry F (1989) Polyheterocyclic conducting polymers and composites derivates. Synth. Met. 28:871–878. https://doi.org/10.1016/0379-6779(89)90616-4

    Article  Google Scholar 

  6. Roncali J, Garreau R, Delabouglise D et al (1989) Modification of the structure and electrochemical properties of poly (thiophene) by ether groups. J. Chem. Soc. Chem. Commun. 11:679–681

    Article  Google Scholar 

  7. Britain DB-C in (1991) U (1991) Molecular electronics: aspects of the physics. Chem. Soc. 27:719–723

    Google Scholar 

  8. Sources AB-J of power (2000) Undefined (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91:37–50

    Article  Google Scholar 

  9. Sonmez G, Meng H, Zhang Q, Wudl F (2003) A highly stable, new electrochromic polymer: poly(1,4-bis(2-(3′,4′-ethylenedioxy)thienyl)-2-methoxy-5-2″-et hylhexyloxybenzene). Adv. Funct. Mater. 13:726–731. https://doi.org/10.1002/adfm.200304317

    Article  CAS  Google Scholar 

  10. Wasim F, Mahmood T, Ayub K (2016) An accurate cost effective DFT approach to study sensor behaviour of polypyrrole for nitrate ion in gas and aqueous phase. Phys. Chem. Chem. Phys. 18:19236–19247

    Article  CAS  Google Scholar 

  11. Bartlett PN, Archer PBM, Ling-Chung SK (1989) Conducting polymer gas sensors part I: fabrication and characterization. Sensors Actuators 19:125–140. https://doi.org/10.1016/0250-6874(89)87065-9

    Article  CAS  Google Scholar 

  12. Mishra AK, Roldan A, De Leeuw NH (2016) A density functional theory study of the adsorption behaviour of CO2 on Cu2O surfaces. J. Chem. Phys. 145:044709. https://doi.org/10.1063/1.4958804

    Article  CAS  PubMed  Google Scholar 

  13. Ahmadi A, Somayeh P (2014) Selective detection of F 2 in the presence of CO, N 2 , O 2 , and H 2 molecules using a ZnO nanocluster. Springer 5639:6916–6920. https://doi.org/10.1007/s00706-014-1378-3

    Article  CAS  Google Scholar 

  14. Beheshtian J, Ravaei I (2018) Toxic CO detection by Li-encapsulated fullerene-like BeO. Struct. Chem. 29:231–241. https://doi.org/10.1007/s11224-017-1022-z

    Article  CAS  Google Scholar 

  15. Samadizadeh M, Peyghan AA, Rastegar SF (2016) DFT studies of hydrogen adsorption and dissociation on MgO nanotubes. Main Gr Chem 15:107–116. https://doi.org/10.3233/MGC-150189

    Article  CAS  Google Scholar 

  16. Gröttrup J, Lupan O, de Leeuw NH et al (2017) Enhanced UV and ethanol vapour sensing of a single 3-D ZnO tetrapod alloyed with Fe 2 O 3 nanoparticles. Sensors Actuators B Chem. 245:448–461. https://doi.org/10.1016/j.snb.2017.01.107

    Article  CAS  Google Scholar 

  17. Mishra AK, Tandon P (2009) A comparative ab initio and DFT study of polyaniline leucoemeraldine base and its oligomers. J. Phys. Chem. B 113:14629–14639. https://doi.org/10.1021/jp906799m

    Article  CAS  PubMed  Google Scholar 

  18. Mishra AK (2015) DFT study of structural, vibrational and electronic properties of polyaniline pernigraniline model compounds. J. Comput. Sci. 10:195–208. https://doi.org/10.1016/j.jocs.2015.02.003

    Article  Google Scholar 

  19. Liao F, Toney MF, Subramanian V (2010) Thickness changes in polythiophene gas sensors exposed to vapor. Sensors Actuators B Chem. 148:74–80. https://doi.org/10.1016/j.snb.2010.04.035

    Article  CAS  Google Scholar 

  20. Kaloni TP, Giesbrecht PK, Schreckenbach G, Freund MS (2017) Polythiophene: from fundamental perspectives to applications. Chem. Mater. 29:10248–10283

    Article  CAS  Google Scholar 

  21. Navale ST, Mane AT, Khuspe GD et al (2014) Room temperature NO2 sensing properties of polythiophene films. Synth. Met. 195:228–233. https://doi.org/10.1016/j.synthmet.2014.06.017

    Article  CAS  Google Scholar 

  22. Malkeshi H, Milani Moghaddam H (2016) Ammonia gas-sensing based on polythiophene film prepared through electrophoretic deposition method. J. Polym. Res. 23:108. https://doi.org/10.1007/s10965-016-0999-0

    Article  CAS  Google Scholar 

  23. Gonçalves VC, Balogh DT (2012) Optical chemical sensors using polythiophene derivatives as active layer for detection of volatile organic compounds. Sensors Actuators B Chem. 162:307–312. https://doi.org/10.1016/J.SNB.2011.12.084

    Article  Google Scholar 

  24. Dua V, Surwade SP, Ammu S et al (2009) Chemical vapor detection using parent polythiophene nanofibers. Macromolecules 42:5414–5415. https://doi.org/10.1021/ma901422d

    Article  CAS  Google Scholar 

  25. Kumar C, Rawat G, Kumar H et al (2018) Poly (3, 3″′-dialkylquaterthiophene) based flexible nitrogen dioxide gas sensor. IEEE Sensors Lett 2:1–1. https://doi.org/10.1109/LSENS.2018.2799851

    Article  Google Scholar 

  26. Kamble DB, Sharma A, Yadav JB et al (2017) Facile chemical bath deposition method for interconnected nanofibrous polythiophene thin films and their use for highly efficient room temperature NO2 sensor application. Sensors Actuators B Chem. 244:522–530. https://doi.org/10.1016/j.snb.2017.01.021

    Article  CAS  Google Scholar 

  27. Xue M, Zhang Y, Yang Y, Cao T (2008) Processing matters: in situ fabrication of conducting polymer microsensors enables ultralow-limit gas detection. Adv. Mater. 20:2145–2150. https://doi.org/10.1002/adma.200702864

    Article  CAS  Google Scholar 

  28. Li B, Santhanam S, Schultz L et al (2007) Inkjet printed chemical sensor array based on polythiophene conductive polymers. Sensors Actuators B Chem. 123:651–660. https://doi.org/10.1016/j.snb.2006.09.064

    Article  CAS  Google Scholar 

  29. Ho HA, Najari A, Leclerc M (2008) Optical detection of DNA and proteins with cationic polythiophenes. Acc. Chem. Res. 41:168–178. https://doi.org/10.1021/ar700115t

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Bunes BR, Wu N et al (2018) Sensing methamphetamine with chemiresistive sensors based on polythiophene-blended single-walled carbon nanotubes. Sensors Actuators B Chem. 255:1814–1818. https://doi.org/10.1016/j.snb.2017.08.201

    Article  CAS  Google Scholar 

  31. Kumar C, Rawat G, Kumar H et al (2018) Flexible poly (3, 3″″″- dialkylquaterthiophene) based interdigitated metal-semiconductor-metal ammonia gas sensor. Sensors Actuators B Chem. 255:203–209. https://doi.org/10.1016/j.snb.2017.08.014

    Article  CAS  Google Scholar 

  32. Li RWC, Ventura L, Gruber J et al (2008) A selective conductive polymer-based sensor for volatile halogenated organic compounds (VHOC). Sensors Actuators B Chem. 131:646–651. https://doi.org/10.1016/j.snb.2007.12.051

    Article  CAS  Google Scholar 

  33. Asaduzzaman AM, Schmidt-D’Aloisio K, Dong Y, Springborg M (2005) Properties of polythiophene and related conjugated polymers: a density-functional study. Phys. Chem. Chem. Phys. 7:2714–2722. https://doi.org/10.1039/b505624a

    Article  CAS  PubMed  Google Scholar 

  34. Rad AS, Valipour P, Gholizade A, Mousavinezhad SE (2015) Interaction of SO2 and SO3 on terthiophene (as a model of polythiophene gas sensor): DFT calculations. Chem. Phys. Lett. 639:29–35. https://doi.org/10.1016/j.cplett.2015.08.062

    Article  CAS  Google Scholar 

  35. Muhammad S, Al-Sehemi AG, Al-Assiri MS et al (2015) Quantum chemical investigation of spectroscopic studies and hydrogen bonding interactions between water and methoxybenzeylidene-based humidity sensor. J. Theor. Comput. Chem. 14:1550029. https://doi.org/10.1142/s0219633615500297

    Article  CAS  Google Scholar 

  36. Sajid H, Mahmood T, Ayub K (2017) An accurate comparative theoretical study of the interaction of furan, pyrrole, and thiophene with various gaseous analytes. J. Mol. Model. 23. https://doi.org/10.1007/s00894-017-3458-x

  37. Sajid H, Mahmood T, Ayub K (2018) High sensitivity of polypyrrole sensor for uric acid over urea, acetamide and sulfonamide: a density functional theory study. Synth. Met. 235:49–60. https://doi.org/10.1016/j.synthmet.2017.11.008

    Article  CAS  Google Scholar 

  38. Sajid H, Ayub K, Mahmood T (2019) A comprehensive DFT study on the sensing abilities of cyclic oligothiophenes (nCTs). New J. Chem. 43:14120–14133. https://doi.org/10.1039/c9nj01894h

    Article  CAS  Google Scholar 

  39. Sajid H, Mahmood T, Mahmood MHR, Ayub K (2019) Comparative investigation of sensor application of polypyrrole for gaseous analytes. J. Phys. Org. Chem. 32(8):e3960. https://doi.org/10.1002/poc.3960

    Article  CAS  Google Scholar 

  40. Shokuhi Rad A, Esfahanian M, Ganjian E et al (2016) The polythiophene molecular segment as a sensor model for H2O, HCN, NH3, SO3, and H2S: a density functional theory study. J. Mol. Model. 22:127. https://doi.org/10.1007/s00894-016-3001-5

    Article  CAS  PubMed  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB et al (2010) Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford

    Google Scholar 

  42. Dennington R, Keith TMJ (2009) GaussView, version 5.0.8. Semichem Inc., Shawnee Mission

    Google Scholar 

  43. Allouche AR (2011) Gabedita - a graphical user interface for computational chemistry softwares. J. Comput. Chem. 32:174–182. https://doi.org/10.1002/jcc.21600

    Article  CAS  PubMed  Google Scholar 

  44. Kamran M, Ullah H, Shah AUHA et al (2015) Combined experimental and theoretical study of poly(aniline-co-pyrrole) oligomer. Polymer (Guildf) 72:30–39. https://doi.org/10.1016/j.polymer.2015.07.003

    Article  CAS  Google Scholar 

  45. Sun H, Hu Z, Zhong C et al (2016) Quantitative estimation of exciton binding energy of polythiophene-derived polymers using polarizable continuum model tuned range-separated density functional. J. Phys. Chem. C 120:8048–8055. https://doi.org/10.1021/acs.jpcc.6b01975

    Article  CAS  Google Scholar 

  46. Gerami E, Nasimi N, Jafari M et al (2015) Ab-initio study of interaction of some atmospheric gases (SO2, NH3, H2O, CO, CH4 and CO2) with polypyrrole (3PPy) gas sensor: DFT calculations. Sensors Actuators B Chem. 220:641–651. https://doi.org/10.1016/j.snb.2015.06.019

    Article  CAS  Google Scholar 

  47. Ullah H, Shah AUHA, Ayub K, Bilal S (2013) Density functional theory study of poly(o -phenylenediamine) oligomers. J. Phys. Chem. C 117:4069–4078. https://doi.org/10.1021/jp311526u

    Article  CAS  Google Scholar 

  48. Ullah H, Ayub K, Ullah Z et al (2013) Theoretical insight of polypyrrole ammonia gas sensor. Synth. Met. 172:14–20. https://doi.org/10.1016/j.synthmet.2013.03.021

    Article  CAS  Google Scholar 

  49. Ullah H, Shah AUHA, Bilal S, Ayub K (2013) DFT study of polyaniline NH3, CO2, and CO gas sensors: comparison with recent experimental data. J. Phys. Chem. C 117:23701–23711. https://doi.org/10.1021/jp407132c

    Article  CAS  Google Scholar 

  50. Ullah H, Shah AUHA, Bilal S, Ayub K (2014) Doping and dedoping processes of polypyrrole: DFT study with hybrid functionals. J. Phys. Chem. C 118:17819–17830. https://doi.org/10.1021/jp505626d

    Article  CAS  Google Scholar 

  51. Bibi S, Ullah H, Ahmad SM et al (2015) Molecular and electronic structure elucidation of polypyrrole gas sensors. J. Phys. Chem. C 119:15994–16003. https://doi.org/10.1021/acs.jpcc.5b03242

    Article  CAS  Google Scholar 

  52. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19:553–566. https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  53. Wasim F, Kosar N, Mahmood T, Ayub K (2018) Sensor applications of polypyrrole for oxynitrogen analytes: a DFT study. J. Mol. Model. 24(11):308. https://doi.org/10.1007/s00894-018-3843-0

    Article  CAS  PubMed  Google Scholar 

  54. Rocha M, Di Santo A, Arias JM et al (2015) Ab-initio and DFT calculations on molecular structure, NBO, HOMO-LUMO study and a new vibrational analysis of 4-(dimethylamino) Benzaldehyde. Spectrochim Acta - Part A Mol Biomol Spectrosc 136:635–643. https://doi.org/10.1016/j.saa.2014.09.077

    Article  CAS  Google Scholar 

  55. Koopmans T (1933) Ordering of wave functions and eigen energies to the individual electrons of an atom. Physica 1:104–113

    Article  CAS  Google Scholar 

  56. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J. Am. Chem. Soc. 121:1922–1924. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  57. Riley KE, Murray JS, Fanfrlík J et al (2013) Halogen bond tunability II: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds. J. Mol. Model. 19:4651–4659. https://doi.org/10.1007/s00894-012-1428-x

    Article  CAS  PubMed  Google Scholar 

  58. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc. Chem. Res. 38:386–395. https://doi.org/10.1021/ar0400995

    Article  CAS  PubMed  Google Scholar 

  59. Nagarajan V, Chandiramouli R (2015) A first-principles study of chlorine adsorption characteristics on α-Cr2O3 nanostructures. J. Chem. Sci. 127:1785–1794. https://doi.org/10.1007/s12039-015-0940-9

    Article  CAS  Google Scholar 

  60. Liu XY, Zhang JM, Xu KW (2014) Chlorine molecule adsorbed on graphene and doped graphene: a first-principle study. Phys. B Condens. Matter 436:54–58. https://doi.org/10.1016/j.physb.2013.11.042

    Article  CAS  Google Scholar 

  61. Azimi F, Tazikeh-Lemeski E (2018) Effects of Cl 2 adsorption over the optical and electronic properties of Al 12 N 12 and Al 12 CN 11 fullerenes: density functional theory study. Phys E Low-Dimensional Syst Nanostructures 103:35–45. https://doi.org/10.1016/j.physe.2018.05.019

    Article  CAS  Google Scholar 

  62. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc. Natl. Acad. Sci. U. S. A. 101:16789–16794. https://doi.org/10.1073/pnas.0407607101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Murray JS, Macaveiu L, Politzer P (2014) Factors affecting the strengths of sigma-hole electrostatic potentials. J. Comput. Sci. 5:590–596. https://doi.org/10.1016/j.jocs.2014.01.002

    Article  Google Scholar 

  64. Lee LH (1991) Fundamentals of adhesion

  65. Hizhnyi Y, Nedilko SG, Borysiuk V, Gubanov VA (2015) Computational studies of boron- and nitrogen-doped single-walled carbon nanotubes as potential sensor materials of hydrogen halide molecules HX (X = F, Cl, Br). Int. J. Quantum Chem. 115:1475–1482. https://doi.org/10.1002/qua.24953

    Article  CAS  Google Scholar 

  66. Frisch MJ, Trucks G, Schlegel HB et al (2009) Gaussian 09, revision A. 1. Gaussian Inc, Wallingford

    Google Scholar 

  67. Rosmus P, Bock H, Solouki B et al (1981) Silaethene: highly correlated wave functions and photoelectron spectroscopic evidence. Angew. Chem. Int. Ed. Eng. 20:598–599. https://doi.org/10.1002/anie.198105981

    Article  Google Scholar 

  68. Duffy NV (1972) Interpretation of infrared spectra. J. Chem. Educ. 49:652. https://doi.org/10.1021/ed049p652.1

    Article  Google Scholar 

  69. Kwiatkowski JS, Leszczyński J, Teca I (1997) Molecular structure and infrared spectra of furan, thiophene, selenophene and their 2,5-N and 3,4-N derivatives: density functional theory and conventional post-Hartree-Fock MP2 studies. J. Mol. Struct. 436–437:451–480. https://doi.org/10.1016/S0022-2860(97)00125-7

    Article  Google Scholar 

  70. Bilal S, Bibi S, Ahmad SM, Shah AUHA (2015) Counterpoise-corrected energies, NBO, HOMO-LUMO and interaction energies of poly(o-aminophenol) for ammonia sensing by DFT methods. Synth. Met. 209:143–149. https://doi.org/10.1016/j.synthmet.2015.06.027

    Article  CAS  Google Scholar 

  71. Luo J, Xue ZQ, Liu WM et al (2006) Koopmans’ theorem for large molecular systems within density functional theory. J. Phys. Chem. A 110:12005–12009. https://doi.org/10.1021/jp063669m

    Article  CAS  PubMed  Google Scholar 

  72. Chattaraj PK, Giri S (2009) Electrophilicity index within a conceptual DFT framework. Annu. Reports Prog. Chem. - Sect. C 105:13–39

    Article  CAS  Google Scholar 

  73. Bora C, Pegu R, Saikia BJ, Dolui SK (2014) Synthesis of polythiophene/graphene oxide composites by interfacial polymerization and evaluation of their electrical and electrochemical properties. Polym. Int. 63:2061–2067. https://doi.org/10.1002/pi.4739

    Article  CAS  Google Scholar 

  74. Bora C, Sarkar C, Mohan KJ, Dolui S (2015) Polythiophene/graphene composite as a highly efficient platinum-free counter electrode in dye-sensitized solar cells. Electrochim. Acta 157:225–231. https://doi.org/10.1016/j.electacta.2014.12.164

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Institute of Chemistry, University of the Punjab, Department of Chemistry, COMSATS University, Abbottabad Campus, Pakistan. We also acknowledge the Higher Education Commission (HEC) of Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khurshid Ayub.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 5057 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, A., Farooq, U., Farooqi, B.A. et al. Electronic structure of polythiophene gas sensors for chlorinated analytes. J Mol Model 26, 44 (2020). https://doi.org/10.1007/s00894-020-4287-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4287-x

Keywords

Navigation