Skip to main content

Advertisement

Log in

Electric double layer formation and storing energy processes on graphene-based supercapacitors from electrical and thermodynamic perspectives

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Atomistic molecular dynamics simulations were used to investigate the processes of electrical double layer formation and electrolyte confinement in graphene-based supercapacitors. For both processes, free energy calculations were used to analyze the thermodynamics involved in the electrolyte confinement and its re-arrangement in a double layer on the electrode surface. The value of the free energy of the formation of the double electric layer was related to the energy required to charge the supercapacitor, i.e., the energy density stored, and compared with values obtained using Poisson’s electrostatic formalism, which is the conventionally employed approach. Both analyzes were consistent with each other, presenting compatible values for the stored energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhou H, Rouha M, Feng G, Lee S, Docherty H, Fenter P, Cummings PT, Fulvio PF, Dai S, McDonough J, Presser V, Gogotsi Y (2012) Nanoscale perturbations of room temperature ionic liquid structure at charged and uncharged interfaces. ACS Nano 6(11):9818–9827. https://doi.org/10.1021/nn303355b

    Article  CAS  PubMed  Google Scholar 

  2. Péan C, Merlet C, Rotenberg B, Madden P, Taberna P-L, Daffos B, Salanne M, Simon P (2014) On the dynamics of charging in nanoporous carbon-based supercapacitors. ACS Nano 8(2):1576–1583. https://doi.org/10.1021/nn4058243

    Article  CAS  PubMed  Google Scholar 

  3. Kondrat S, Wu P, Qiao R, Kornyshev AA (2014) Accelerating charging dynamics in subnanometre pores. Nat. Mater. 13(4). https://doi.org/10.1038/nmat3916

  4. Cl M, Limmer DT, Salanne M, van Roij R, Madden PA, Chandler D, Rotenberg B (2014) The electric double layer has a life of its own. J. Phys. Chem. C 118(32):18291–18298. https://doi.org/10.1021/jp503224w

    Article  CAS  Google Scholar 

  5. Cl M, Péan C, Rotenberg B, Madden PA, Simon P, Salanne M (2013) Simulating supercapacitors: can we model electrodes as constant charge surfaces? The Journal of Physical Chemistry Letters 4(2):264–268. https://doi.org/10.1021/jz3019226

    Article  CAS  Google Scholar 

  6. Hu Z, Vatamanu J, Borodin O, Bedrov D (2013) A molecular dynamics simulation study of the electric double layer and capacitance of [BMIM][PF 6] and [BMIM][BF 4] room temperature ionic liquids near charged surfaces. Phys. Chem. Chem. Phys. 15(34):14234–14247. https://doi.org/10.1039/C3CP51218E

    Article  CAS  PubMed  Google Scholar 

  7. Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26(14):2219–2251. https://doi.org/10.1002/adma.201304137

    Article  CAS  PubMed  Google Scholar 

  8. Jiang D-e WJ (2014) Unusual effects of solvent polarity on capacitance for organic electrolytes in a nanoporous electrode. Nanoscale 6(10):5545–5550. https://doi.org/10.1039/C4NR00046C

    Article  PubMed  Google Scholar 

  9. Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y (2008) Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew. Chem. Int. Ed. 47(18):3392–3395. https://doi.org/10.1002/anie.200704894

    Article  CAS  Google Scholar 

  10. Chabi S, Peng C, Hu D, Zhu Y (2014) Ideal three-dimensional electrode structures for electrochemical energy storage. Adv. Mater. 26(15):2440–2445. https://doi.org/10.1002/adma.201305095

    Article  CAS  PubMed  Google Scholar 

  11. Zhang C, Peng Z, Lin J, Zhu Y, Ruan G, Hwang C-C, Lu W, Hauge RH, Tour JM (2013) Splitting of a vertical multiwalled carbon nanotube carpet to a graphene nanoribbon carpet and its use in supercapacitors. ACS Nano 7(6):5151–5159. https://doi.org/10.1021/nn400750n

    Article  CAS  PubMed  Google Scholar 

  12. Krause A, Balducci A (2011) High voltage electrochemical double layer capacitor containing mixtures of ionic liquids and organic carbonate as electrolytes. Electrochem. Commun. 13(8):814–817. https://doi.org/10.1016/j.elecom.2011.05.010

    Article  CAS  Google Scholar 

  13. Schütter C, Neale AR, Wilde P, Goodrich P, Hardacre C, Passerini S, Jacquemin J, Balducci A (2016) The use of binary mixtures of 1-butyl-1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl}imide and aliphatic nitrile solvents as electrolyte for supercapacitors. Electrochim. Acta 220:146–155. https://doi.org/10.1016/j.electacta.2016.10.088

    Article  CAS  Google Scholar 

  14. Leach A (2001) Molecular modelling: principles and applications. Prentice Hall, New York

    Google Scholar 

  15. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98:10089–10099

    Article  CAS  Google Scholar 

  16. Chaban VV, Fileti EE, Prezhdo OV (2017) Exfoliation of graphene in ionic liquids: pyridinium versus pyrrolidinium. J. Phys. Chem. C 121(1):911–917. https://doi.org/10.1021/acs.jpcc.6b11003

    Article  CAS  Google Scholar 

  17. Chaban VV, Fileti EE (2015) Graphene exfoliation in ionic liquids: unified methodology. RSC Adv. 5(99):81229–81234. https://doi.org/10.1039/c5ra16857k

    Article  CAS  Google Scholar 

  18. Voroshylova IV, Chaban VV (2014) Atomistic force field for pyridinium-based ionic liquids: reliable transport properties. J. Phys. Chem. B 118(36):10716–10724. https://doi.org/10.1021/jp5054875

    Article  CAS  PubMed  Google Scholar 

  19. Canongia Lopes JN, Deschamps J, Pádua AAH (2004) Modeling ionic liquids using a systematic all-atom force field. J. Phys. Chem. B 108(6):2038–2047. https://doi.org/10.1021/jp0362133

    Article  CAS  Google Scholar 

  20. Beutler TC, Mark AE, van Schaik RC, Greber PR, van Gunsteren WF (1994) Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem Phys Lett:222

  21. Abraham MJ, van der Spoel D, Lindahl E, Hess B, and the Gromacs Development Team (2018) Gromacs user manual , http://www.gromacs.org

  22. Martinez L, Andrade R, Birgin EG, Martinez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30(13):2157–2164. https://doi.org/10.1002/jcc.21224

    Article  CAS  PubMed  Google Scholar 

  23. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J. Mol. Graph. 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  24. Salanne M (2017) Ionic liquids for supercapacitor applications. Top. Curr. Chem. 375(3):63. https://doi.org/10.1007/s41061-017-0150-7

    Article  CAS  Google Scholar 

  25. Xia L, Yu L, Hu D, Chen GZ (2017) Electrolytes for electrochemical energy storage. Materials Chemistry Frontiers 1(4):584–618. https://doi.org/10.1039/C6QM00169F

    Article  CAS  Google Scholar 

  26. Zhan C, Lian C, Zhang Y, Thompson MW, Xie Y, Wu J, Kent PRC, Cummings PT, De J, Wesolowski DJ (2017) Computational insights into materials and interfaces for capacitive energy storage. Advanced Science 4(7):1700059. https://doi.org/10.1002/advs.201700059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes – a review. J. Mater. 2(1):37–54. https://doi.org/10.1016/j.jmat.2016.01.001

    Article  Google Scholar 

  28. Theodoor J, Overbeek G (1990) The role of energy and entropy in the electrical double layer. Colloids and Surfaces 51:61–75. https://doi.org/10.1016/0166-6622(90)80132-N

    Article  Google Scholar 

  29. Manciu M, Ruckenstein E (2003) On the chemical free energy of the electrical double layer. Langmuir 19(4):1114–1120. https://doi.org/10.1021/la0266132

    Article  CAS  Google Scholar 

  30. Kornyshev AA (2007) Double-layer in ionic liquids: paradigm change? J. Phys. Chem. B 111(20):5545–5557. https://doi.org/10.1021/jp067857o

    Article  CAS  PubMed  Google Scholar 

  31. Burt R, Birkett G, Zhao XS (2014) A review of molecular modelling of electric double layer capacitors. Phys. Chem. Chem. Phys. 16(14):6519–6538. https://doi.org/10.1039/C3CP55186E

    Article  CAS  PubMed  Google Scholar 

  32. Bedrov D, Vatamanu J, Hu Z (2015) Ionic liquids at charged surfaces: insight from molecular simulations. J. Non-Cryst. Solids 407:339–348. https://doi.org/10.1016/j.jnoncrysol.2014.08.007

    Article  CAS  Google Scholar 

  33. Haskins JB, Wu JJ, Lawson JW (2016) Computational and experimental study of li-doped ionic liquids at electrified interfaces. J. Phys. Chem. C 120(22):11993–12011. https://doi.org/10.1021/acs.jpcc.6b02449

    Article  CAS  Google Scholar 

  34. Paek E, Pak AJ, Hwang GS (2013) A computational study of the interfacial structure and capacitance of graphene in [BMIM][PF6] ionic liquid. J. Electrochem. Soc. 160(1). https://doi.org/10.1149/2.019301jes

  35. Lazzari M, Soavi F, Mastragostino M (2010) Mesoporous carbon design for ionic liquid-Based, double-layer supercapacitors. Fuel Cells 10(5):840–847. https://doi.org/10.1002/fuce.200900198

    Article  CAS  Google Scholar 

  36. Lazzari M, Mastragostino M, Pandolfo AG, Ruiz V, Soavi F (2011) Role of carbon porosity and ion size in the development of ionic liquid based supercapacitors. J. Electrochem. Soc. 158(1). https://doi.org/10.1149/1.3514694

Download references

Acknowledgments

The author gratefully acknowledges support from FAPESP (São Paulo Research Foundation, grant number 2017/11631-2), Shell, the strategic importance of the support given by ANP (Brazil’s National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation and CNPq (National Council for Scientific and Technological Development).

Funding

This study is supported by FAPESP (São Paulo Research Foundation, grant number 2017/11631-2), Shell, the strategic importance of the support given by ANP (Brazil’s National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation and CNPq (National Council for Scientific and Technological Development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eudes Eterno Fileti.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to Topical Collection XX - Brazilian Symposium of Theoretical Chemistry (SBQT2019)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fileti, E.E. Electric double layer formation and storing energy processes on graphene-based supercapacitors from electrical and thermodynamic perspectives. J Mol Model 26, 159 (2020). https://doi.org/10.1007/s00894-020-04428-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04428-y

Keywords

Navigation