Skip to main content

Advertisement

Log in

Thermal stability and detonation character of nitro-substituted derivatives of imidazole

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A series of nitro-imidazole derivatives were designed by replacing hydrogen atoms on imidazole ring with nitro group one by one. In order to investigate the thermodynamic stability, heat of formation (HOF), and bond dissociation energy (BDE) are calculated at the B3PW91/6-311+G(d,p) level. In order to investigate the impact sensitivity and detonation property, the drop height (H50), free space per molecule in crystal lattice (ΔV), detonation velocity (D), and detonation pressure (P) are calculated by using the empirical Kamlet–Jacobs (K-J) equation. The results show that the thermal stabilities of title molecules are determined by whether nitro group is associated to 1-position or not and accompanied with the steric hindrance between nitro groups and the charge population on the carbon atoms of imidazole ring. The excellent impact sensitivity and detonation performance of title molecules are also evaluated. On the consideration both of stability and detonation characters, 2,4,5-trinitro-1H-imidazole (D = 8.98 km/s, P = 36.70 GPa) is screened out as the potential high-energy-density molecule for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ni K-K, Ospelkaus S, De Miranda M, Pe’er A, Neyenhuis B, Zirbel J, Kotochigova S, Julienne P, Jin D, Ye J (2008) A high phase-space-density gas of polar molecules. Science 322:231–235

    Article  CAS  Google Scholar 

  2. Ross M, Ree F (1980) Repulsive forces of simple molecules and mixtures at high density and temperature. J Chem Phys 73:6146–6152

    Article  CAS  Google Scholar 

  3. Mondal T, Saritha B, Ghanta S, Roy T, Mahapatra S, Prasad MD (2009) On some strategies to design new high energy density molecules. J Mol Struct THEOCHEM 897:42–47

    Article  CAS  Google Scholar 

  4. Wang Y, Liu Y, Song S, Yang Z, Qi X, Wang K, Liu Y, Zhang Q, Tian Y (2018) Accelerating the discovery of insensitive high-energy-density materials by a materials genome approach. Nat Commun 9:2444

    Article  Google Scholar 

  5. Liu T, JIa J, Li B, Gao K (2019) Theoretical exploration on structural stabilities and detonation properties of nitrimino substituted derivatives of cyclopropane. Chin J Struct Chem 38:688–694

    Google Scholar 

  6. Li B, Zhou M, Peng J, Li L, Guo Y (2019) Theoretical calculations about nitro-substituted pyridine as high-energy-density compounds (HEDCs). J Mol Model 25:23

    Article  CAS  Google Scholar 

  7. Flüescheim B, Holmes EL (1928) CCCXCIX.—pentanitroaniline. J Chem Soc:3041–3046

    Article  Google Scholar 

  8. Boddu VM, Viswanath DS, Ghosh TK, Damavarapu R (2010) 2,4,6-Triamino-1,3,5-trinitrobenzene (TATB) and TATB-based formulations—a review. J Hazard Mater 181:1–8

    Article  CAS  Google Scholar 

  9. Thottempudi V, Forohor F, Parrish DA, Shreeve JM (2012) Tris (triazolo) benzene and its derivatives: high-density energetic materials. Angew Chem Int Ed 51:9881–9885

    Article  CAS  Google Scholar 

  10. Zhang Y, Parrish DA, Jean'ne MS (2013) Derivatives of 5-nitro-1, 2, 3-2H-triazole–high performance energetic materials. J Mater Chem A 1:585–593

    Article  CAS  Google Scholar 

  11. Cooper PW (2018) Explosives engineering. Wiley

  12. Bulusu S, Damavarapu R, Autera JR, Behrens R, Minier LM, Villanueva J, Jayasuriya K, Axenrod T (1995) Thermal rearrangement of 1,4-dinitroimidazole to 2,4-dinitroimidazole: characterization and investigation of the mechanism by mass spectrometry and isotope labeling. J Phys Chem 99:5009–5015

    Article  CAS  Google Scholar 

  13. Bracuti A (1995) Crystal structure of 2, 4-dinitroimidazole (24DNI). J Chem Crystallogr 25:625–627

    Article  CAS  Google Scholar 

  14. Ravi P (2017) Experimental study and ab-initio calculations on the molecular structure, infrared and Raman spectral properties of dinitroimidazoles. Chem Data Collect 9-10:11–23

    Article  Google Scholar 

  15. Grimmett MR, Hua S-T, Chang K-C, Foley S, Simpson J (1989) 1, 4-Dinitroimidazole and derivatives. Structure and thermal rearrangement. Aust J Chem 42:1281–1289

    Article  CAS  Google Scholar 

  16. Minier L, Behrens R, Bulusu S (1996) Mass spectra of 2, 4-dinitroimidazole and its isotopomers using simultaneous thermogravimetric modulated beam mass spectrometry. J Mass Spectrom 31:25–30

    Article  CAS  Google Scholar 

  17. De Bondt H, Ragia E, Blaton N, Peeters O, De Ranter C (1993) Structure of 4 (5)-nitroimidazole at 100 K. Acta Crystallogr Sect C Cryst Struct Commun 49:693–695

    Article  Google Scholar 

  18. Carvalho TMT, Amaral LMPF, Morais VMF, Ribeiro da Silva MDMC (2017) Calorimetric and computational studies for three nitroimidazole isomers. J Chem Thermodyn (105):267–275

    Article  CAS  Google Scholar 

  19. Windler GK, Scott BL, Tomson NC, Leonard PW (2015) Crystal structure of 4,5-di-nitro-1H-imidazole. Acta Crystallogr Sect E Cryst Commun 71:o634

    Article  CAS  Google Scholar 

  20. Coburn MD (1977) Ammonium 2, 4, 5-trinitroimidazole, in, Google Patents

  21. Cho SG, Cho JR, Goh EM, Kim JK, Damavarapu R, Surapaneni R (2005) Synthesis and characterization of 4, 4′, 5, 5′-tetranitro-2, 2′-bi-1H-imidazole (TNBI). Propellants Explos Pyrotech 30:445–449

    Article  CAS  Google Scholar 

  22. Damavarapu R, Jayasuriya K, Vladimiroff T, Iyer S (1995) 2, 4-dinitroimidazole-a less sensitive explosive and propellant made by thermal rearrangement of molten 1, 4 dinitroimidazole, in, Google Patents

  23. Cho JR, Kim KJ, Cho SG, Kim JK (2002) Synthesis and characterization of 1-methyl-2,4,5-trinitroimidazole (MTNI). J Heterocyclic Chem 39:141–147

    Article  CAS  Google Scholar 

  24. Duddu R, Dave PR, Damavarapu R, Gelber N, Parrish D (2010) Synthesis of N-amino- and N-nitramino-nitroimidazoles. Tetrahedron Lett 51:399–401

    Article  CAS  Google Scholar 

  25. Windaus A, Vogt W (1907) Synthese des Imidazolyl-äthylamins. Ber Dtsch Chem Ges 40:3691–3695

    Article  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1

  27. Kamlet MJ, Ablard JE (1968) Chemistry of detonations. II. Buffered equilibria. J Chem Phys 48:36–42

    Article  CAS  Google Scholar 

  28. Kamlet MJ, Jacobs SJ (1968) Chemistry of detonations. I. a simple method for calculating detonation properties of C–H–N–O explosives. J Chem Phys 48:23–35

    Article  CAS  Google Scholar 

  29. Talawar M, Sivabalan R, Mukundan T, Muthurajan H, Sikder A, Gandhe B, Rao AS (2009) Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater 161:589–607

    Article  CAS  Google Scholar 

  30. Politzer P, Murray JS (2016) High performance, low sensitivity: conflicting or compatible? Propellants Explos Pyrotechnics 41:414–425

    Article  CAS  Google Scholar 

  31. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) A possible crystal volume factor in the impact sensitivities of some energetic compounds. J Mol Model 16:895–901

    Article  Google Scholar 

  32. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) An electrostatic interaction correction for improved crystal density prediction. Mol Phys 107:2095–2101

    Article  CAS  Google Scholar 

  33. Politzer P, Martinez J, Murray JS, Concha MC (2010) An electrostatic correction for improved crystal density predictions of energetic ionic compounds. Mol Phys 108:1391–1396

    Article  CAS  Google Scholar 

  34. Politzer P, Murray JS (2015) Some molecular/crystalline factors that affect the sensitivities of energetic materials: molecular surface electrostatic potentials, lattice free space and maximum heat of detonation per unit volume. J Mol Model 21:25

    Article  Google Scholar 

  35. An CW, Guo XD, Song XL, Wang Y, Li FS (2009) Preparation and safety of well-dispersed RDX particles coated with cured HTPB. J Energ Mater 27:118–132

    Article  CAS  Google Scholar 

  36. Politzer P, Murray JS (2015) Perspectives on the crystal densities and packing coefficients of explosive compounds. Struct Chem 27:401–408

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Butong Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Li, L. & Chen, S. Thermal stability and detonation character of nitro-substituted derivatives of imidazole. J Mol Model 25, 298 (2019). https://doi.org/10.1007/s00894-019-4190-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4190-5

Keywords

Navigation