Skip to main content
Log in

Copper-catalyzed cyclopropanation reaction of but-2-ene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The mechanism of the copper(I)-catalyzed cyclopropanation reaction for methyl diazoacetate with both (Z)- and (E)-but-2-ene stereoisomers has been studied using the 6-311++G(d,p) basis set by means of M06-2X and O3LYP functionals. According to both methods, the rate-limiting step is the formation of a copper-carbene intermediate, formed by association between methyl diazoacetate and bis(acetonitrile)-copper(I) ion with the concomitant extrusion of dinitrogen. Cis/trans diastereoselectivity for the cyclopropanation reaction of a 1,2-disubstituted alkene ((Z)-but-2-ene) has been theoretically studied for the first time through the proper location of transition states on the potential-energy surface with the O3LYP method, since no transition structures could be found with the M06-2X functional due to the extreme flatness of the potential-energy surface. The calculated stereoselectivities involving two acetonitrile ligands or one dichloromethane molecule show qualitative agreement with experimental data. This study allows attributing the origin of the selectivity to steric interactions between the ligands of the catalyst system and the olefin substituents. The comparison between the corresponding activation barriers for the direct insertion step shows a higher reactivity for the Z stereoisomer of but-2-ene, consistently with the larger reactant destabilization through steric interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Salaün J (2000) Top Curr Chem 207:1–67. https://doi.org/10.1007/3-540-48255-5_1

    Article  Google Scholar 

  2. Kulinkovich OG (2015) Cyclopropanes in organic synthesis. Wiley, Hoboken. https://doi.org/10.1002/9781118978429

    Book  Google Scholar 

  3. Lebel H, Marcoux J-F, Molinaro C, Charette AB (2003) Chem Rev 103:977–1050. https://doi.org/10.1021/cr010007e

    Article  CAS  PubMed  Google Scholar 

  4. Pellissier H (2008) Tetrahedron 64:7041–7095. https://doi.org/10.1016/j.tet.2008.04.079

    Article  CAS  Google Scholar 

  5. Bartoli G, Bencivenni G, Dalpozzo R (2014) Synthesis 46:979–1029. https://doi.org/10.1055/s-0033-1340838

    Article  CAS  Google Scholar 

  6. García JI, Salvatella L, Pires E, Fraile JM, Mayoral JA (2014) In: Knochel A, Holander GA (eds) Comprehensive organic synthesis II. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-08-097742-3.00426-2

    Chapter  Google Scholar 

  7. Charette AB, Lebel H, Roy M-N (2014) In: Alexakis A, Krause N, Woodward S (eds) Copper-catalyzed asymmetric synthesis. Wiley-VCH, Weinheim. https://doi.org/10.1002/9783527664573.ch8

    Chapter  Google Scholar 

  8. Besora M, Braga AAC, Sameera WMC, Urbano J, Fructos MR, Pérez PJ, Maseras F (2015) J Organomet Chem 784:2–12. https://doi.org/10.1016/j.jorganchem.2014.10.009

    Article  CAS  Google Scholar 

  9. Salomon RG, Kochi JK (1973) J Am Chem Soc 95:3300–3310. https://doi.org/10.1021/ja00791a038

    Article  CAS  Google Scholar 

  10. Díaz-Requejo MM, Belderrain TR, Nicasio MC, Prieto F, Pérez PJ (1999) Organometallics 18:2601–2609. https://doi.org/10.1021/om990270u

    Article  Google Scholar 

  11. Fraile JM, García JI, Martínez-Merino V, Mayoral JA, Salvatella L (2001) J Am Chem Soc 123:7616–7625. https://doi.org/10.1021/ja003695c

    Article  CAS  PubMed  Google Scholar 

  12. Fraile JM, García JI, Gissibl A, Mayoral JA, Pires E, Reiser O, Roldán M, Villalba I (2007) Chem Eur J 13:8830–8839. https://doi.org/10.1002/chem.200700681

    Article  CAS  PubMed  Google Scholar 

  13. Straub BF, Gruber I, Rominger F, Hofmann P (2003) J Organomet Chem 684:124–143. https://doi.org/10.1016/S0022-328X(03)00520-5

    Article  CAS  Google Scholar 

  14. Özen C, Tüzün NŞ (2008) Organometallics 27:4600–4610. https://doi.org/10.1021/om800094k

    Article  CAS  Google Scholar 

  15. Meng Q, Li M, Tang D, Shen W, Zhang J (2004) J Mol Struct (THEOCHEM) 711:193–199. https://doi.org/10.1016/j.theochem.2004.06.050

    Article  CAS  Google Scholar 

  16. Drudis-Solé G, Maseras F, Lledós A, Vallribera A, Moreno-Mañas M (2008) Eur J Org Chem 2008:5614–5621. https://doi.org/10.1002/ejoc.200800762

    Article  CAS  Google Scholar 

  17. Rasmussen T, Jensen JF, Østergaard N, Tanner D, Ziegler T, Norrby P-O (2002) Chem Eur J 8:177–184. https://doi.org/10.1002/1521-3765(20020104)8:1<177::AID-CHEM177>3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  18. García JI, Jiménez-Osés G, Mayoral JA (2011) Chem Eur J 17:529–539. https://doi.org/10.1002/chem.201001262

    Article  CAS  PubMed  Google Scholar 

  19. Cohen AJ, Handy NC (2001) Mol Phys 99:607–615. https://doi.org/10.1080/00268970010023435

    Article  CAS  Google Scholar 

  20. Handy NC, Cohen AJ (2001) Mol Phys 99:403–412. https://doi.org/10.1080/00268970010018431

    Article  CAS  Google Scholar 

  21. Fraile JM, García JI, Herrerías CI, Pires E (2017) Synthesis 49:1444–1460. https://doi.org/10.1055/s-0036-1588699

    Article  CAS  Google Scholar 

  22. Angulo B, Fraile JM, Herrerías CI, Mayoral JA (2017) RSC Adv 7:19417–19424. https://doi.org/10.1039/c7ra01017f

    Article  CAS  Google Scholar 

  23. Liang HC, Kim E, Incarvito CD, Rheingold AL, Karlin KD (2002) Inorg Chem 41:2209–2212. https://doi.org/10.1021/ic010816g

    Article  CAS  PubMed  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02. Gaussian, Wallingford

    Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, revision D.01. Gaussian, Wallingford

    Google Scholar 

  26. Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  27. Bozic-Weber B, Chaurin V, Constable EC, Housecroft CE, Meuwly M, Neuburger M, Rudd JA, Schönhofer E, Siegfried L (2012) Dalton Trans 41:14157–14169. https://doi.org/10.1039/C2DT31159C

    Article  CAS  PubMed  Google Scholar 

  28. Tamasi G, Bonechi C, Rossi C, Cini R, Magnani A (2016) J Coord Chem 69:404–424. https://doi.org/10.1080/00958972.2015.1132416

    Article  CAS  Google Scholar 

  29. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527. https://doi.org/10.1021/j100377a021

    Article  CAS  Google Scholar 

  30. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161. https://doi.org/10.1063/1.456010

    Article  CAS  Google Scholar 

  31. Laury ML, Carlson MJ, Wilson AK (2012) J Comput Chem 33:2380–2387. https://doi.org/10.1002/jcc.23073

    Article  CAS  PubMed  Google Scholar 

  32. Hu S-Z, Zhou Z-H, Xie Z-X, Robertson BE (2014) Z Krist 229:517–523. https://doi.org/10.1515/zkri-2014-1726

    Article  CAS  Google Scholar 

  33. Stojanović M, Aleksić J, Baranac-Stojanović M (2015) Tetrahedron 71:5119–5123. https://doi.org/10.1016/j.tet.2015.06.22

    Article  Google Scholar 

  34. Leung BO, Reid DL, Armstrong DA, Rauk A (2004) J Phys Chem A 108:2720–2725. https://doi.org/10.1021/jp030265a

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) and the Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (Consejo Superior de Investigaciones Científicas (CSIC)–Universidad de Zaragoza) are thanked for the allocation of computer time. Financial support from Ministerio de Economía y Competitividad (MINECO) (Project CTQ2014-52367-R), Gobierno de Aragón, European Regional Development Fund (Consolidated Group E11), and European Social Fund is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Salvatella.

Electronic supplementary material

ESM 1

(DOCX 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angulo, B., Herrerías, C.I., Hormigón, Z. et al. Copper-catalyzed cyclopropanation reaction of but-2-ene. J Mol Model 24, 195 (2018). https://doi.org/10.1007/s00894-018-3737-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3737-1

Keywords

Navigation