Skip to main content
Log in

DFT study of anisotropy effects on the electronic properties of diamond nanowires with nitrogen-vacancy center

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In the development of quantum computing and communications, improvements in materials capable of single photon emission are of great importance. Advances in single photon emission have been achieved experimentally by introducing nitrogen-vacancy (N-V) centers on diamond nanostructures. However, theoretical modeling of the anisotropic effects on the electronic properties of these materials is almost nonexistent. In this study, the electronic band structure and density of states of diamond nanowires with N-V defects were analyzed through first principles approach using the density functional theory and the supercell scheme. The nanowires were modeled on two growth directions [001] and [111]. All surface dangling bonds were passivated with hydrogen (H) atoms. The results show that the N-V introduces multiple trap states within the energy band gap of the diamond nanowire. The energy difference between these states is influenced by the growth direction of the nanowires, which could contribute to the emission of photons with different wavelengths. The presence of these trap states could reduce the recombination rate between the conduction and the valence band, thus favoring the single photon emission.

Diamond nanowires with nitrogen-vacancy centerᅟ

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Broadbent A, Schaffner C (2016) Quantum cryptography beyond quantum key distribution. Des Codes Cryptogr 78(1):351–382. https://doi.org/10.1007/s10623-015-0157-4

    Article  PubMed  Google Scholar 

  2. Trabesinger A (2017) Quantum computing: towards reality. Nature 543(7646):S1–S1. https://doi.org/10.1038/543S1a

    Article  CAS  PubMed  Google Scholar 

  3. Lupo C, Pirandola S (2016) Ultimate precision bound of quantum and subwavelength imaging. Phys Rev Lett 117(19):190802. https://doi.org/10.1103/PhysRevLett.117.190802

    Article  PubMed  Google Scholar 

  4. Lounis B, Moerner W (2000) Single photons on demand from a single molecule at room temperature. Nature 407(6803):491–493. https://doi.org/10.1038/35035032

    Article  CAS  PubMed  Google Scholar 

  5. Moreau E, Robert I, Gérard J, Abram I, Manin L, Thierry-Mieg V (2001) Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. Appl Phys Lett 79(18):2865–2867. https://doi.org/10.1063/1.1415346

    Article  CAS  Google Scholar 

  6. Ma X, Hartmann NF, Baldwin JK, Doorn SK, Htoon H (2015) Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat Nanotechnol 10(8):671–675. https://doi.org/10.1038/nnano.2015.136

    Article  CAS  PubMed  Google Scholar 

  7. Wrachtrup J (2016) 2D Materials: single photons at room temperature. Nat Nanotechnol 11(1):7–8. https://doi.org/10.1038/nnano.2015.265

    Article  CAS  PubMed  Google Scholar 

  8. Castelletto S, Johnson B, Ivády V, Stavrias N, Umeda T, Gali A, Ohshima T (2014) A silicon carbide room-temperature single-photon source. Nat Mater 13(2):151–156. https://doi.org/10.1038/nmat3806

    Article  CAS  PubMed  Google Scholar 

  9. Koperski M, Nogajewski K, Arora A, Cherkez V, Mallet P, Veuillen J-Y, Marcus J, Kossacki P, Potemski M (2015) Single photon emitters in exfoliated WSe2 structures. Nat Nanotechnol 10(6):503–506. https://doi.org/10.1038/nnano.2015.67

    Article  CAS  PubMed  Google Scholar 

  10. Englund D, Fattal D, Waks E, Solomon G, Zhang B, Nakaoka T, Arakawa Y, Yamamoto Y, Vučković J (2005) Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys Rev Lett 95(1):013904. https://doi.org/10.1103/PhysRevLett.95.013904

    Article  CAS  PubMed  Google Scholar 

  11. Högele A, Galland C, Winger M, Imamoğlu A (2008) Photon Antibunching in the photoluminescence spectra of a single carbon nanotube. Phys Rev Lett 100(21):217401. https://doi.org/10.1103/PhysRevLett.100.217401

    Article  CAS  PubMed  Google Scholar 

  12. Kurtsiefer C, Mayer S, Zarda P, Weinfurter H (2000) Stable solid-state source of single photons. Phys Rev Lett 85(2):290–293. https://doi.org/10.1103/PhysRevLett.85.290

    Article  CAS  PubMed  Google Scholar 

  13. Rodiek B, Lopez M, Hofer H, Porrovecchio G, Smid M, Chu X-L, Gotzinger S, Sandoghdar V, Lindner S, Becher C, Kuck S (2017) Experimental realization of an absolute single-photon source based on a single nitrogen vacancy center in a nanodiamond. Optica 4(1):71–76. https://doi.org/10.1364/OPTICA.4.000071

    Article  Google Scholar 

  14. Doherty MW, Manson NB, Delaney P, Jelezko F, Wrachtrup J, Hollenberg LCL (2013) The nitrogen-vacancy colour centre in diamond. Phys Rep 528(1):1–45. https://doi.org/10.1016/j.physrep.2013.02.001

    Article  CAS  Google Scholar 

  15. Sipahigil A, Goldman ML, Togan E, Chu Y, Markham M, Twitchen DJ, Zibrov AS, Kubanek A, Lukin MD (2012) Quantum interference of single photons from remote nitrogen-vacancy centers in diamond. Phys Rev Lett 108(14):143601. https://doi.org/10.1103/PhysRevLett.108.143601

    Article  CAS  PubMed  Google Scholar 

  16. Yang N, Uetsuka H, Osawa E, Nebel CE (2008) Vertically aligned diamond nanowires for DNA sensing. Angew Chem Int Ed 47(28):5183–5185. https://doi.org/10.1002/anie.200801706

    Article  CAS  Google Scholar 

  17. Shalini J, Sankaran KJ, Dong C-L, Lee C-Y, Tai N-H, Lin IN (2013) In situ detection of dopamine using nitrogen incorporated diamond nanowire electrode. Nano 5(3):1159–1167. https://doi.org/10.1039/C2NR32939E

    Article  CAS  Google Scholar 

  18. Liao M, Hishita S, Watanabe E, Koizumi S, Koide Y (2010) Suspended single-crystal diamond nanowires for high-performance nanoelectromechanical switches. Adv Mater 22(47):5393–5397. https://doi.org/10.1002/adma.201003074

    Article  CAS  PubMed  Google Scholar 

  19. Aharonovich I, Castelletto S, Simpson DA, Stacey A, McCallum J, Greentree AD, Prawer S (2009) Two-level Ultrabright single photon emission from diamond nanocrystals. Nano Lett 9(9):3191–3195. https://doi.org/10.1021/nl9014167

    Article  CAS  PubMed  Google Scholar 

  20. Babinec TM, Hausmann BJ, Khan M, Zhang Y, Maze JR, Hemmer PR, Lončar M (2010) A diamond nanowire single-photon source. Nat Nanotechnol 5(3):195–199. https://doi.org/10.1038/nnano.2010.6

    Article  CAS  PubMed  Google Scholar 

  21. Evans RE, Sipahigil A, Sukachev DD, Zibrov AS, Lukin MD (2016) Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation. Phys Rev Appl 5(4):044010. https://doi.org/10.1103/PhysRevApplied.5.044010

    Article  CAS  Google Scholar 

  22. Momenzadeh SA, Stöhr RJ, de Oliveira FF, Brunner A, Denisenko A, Yang S, Reinhard F, Jr W (2014) Nanoengineered diamond waveguide as a robust bright platform for Nanomagnetometry using shallow nitrogen vacancy centers. Nano Lett 15(1):165–169. https://doi.org/10.1021/nl503326t

    Article  CAS  PubMed  Google Scholar 

  23. Yu Y, Wu L, Zhi J (2015) Diamond nanowires: fabrication, structure, properties and applications.Novel aspects of diamond. Springer, Berlin, pp 123–164. https://doi.org/10.1007/978-3-319-09834-0_5

    Chapter  Google Scholar 

  24. Gali A, Maze JR (2013) Ab initio study of the split silicon-vacancy defect in diamond: electronic structure and related properties. Phys Rev B 88(23):235205. https://doi.org/10.1103/PhysRevB.77.155206

    Article  CAS  Google Scholar 

  25. Gali A, Fyta M, Kaxiras E (2008) Ab initio supercell calculations on nitrogen-vacancy center in diamond: electronic structure and hyperfine tensors. Phys Rev B Condens Matter 77(15):155206. https://doi.org/10.1103/PhysRevB.77.155206

    Article  CAS  Google Scholar 

  26. Larsson J, Delaney P (2008) Electronic structure of the nitrogen-vacancy center in diamond from first-principles theory. Phys Rev B Condens Matter 77(16):165201. https://doi.org/10.1103/PhysRevB.77.165201

    Article  CAS  Google Scholar 

  27. Goss J, Briddon P (2006) Theory of boron aggregates in diamond: first-principles calculations. Phys Rev B 73(8):085204. https://doi.org/10.1103/PhysRevB.73.085204

    Article  CAS  Google Scholar 

  28. Niu L, Zhu J-Q, Han X, Tan M-L, Gao W, Du S-Y (2009) First principles study of structural, electronic and vibrational properties of heavily boron-doped diamond. Phys Lett A 373(29):2494–2500. https://doi.org/10.1016/j.physleta.2009.05.008

    Article  CAS  Google Scholar 

  29. D’Haenens-Johansson U, Edmonds A, Green B, Newton M, Davies G, Martineau P, Khan R, Twitchen D (2011) Optical properties of the neutral silicon split-vacancy center in diamond. Phys Rev B 84(24):245208. https://doi.org/10.1103/PhysRevB.84.245208

    Article  CAS  Google Scholar 

  30. Abdulsattar MA (2015) Electronic and structural properties of nitrogen-vacancy center in diamond nanocrystals: a theoretical study. Karbala Int J Modern Sci 1(3):142–151. https://doi.org/10.1016/j.kijoms.2015.10.008

    Article  Google Scholar 

  31. Parlinski K, Li Z, Kawazoe Y (1997) First-principles determination of the soft mode in cubic ZrO2. Phys Rev Lett 78(21):4063. https://doi.org/10.1103/PhysRevLett.78.4063

    Article  CAS  Google Scholar 

  32. Yang H, Tang Y, Gong J, Liu Y, Wang X, Zhao Y, Yang P, Wang S (2013) Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons. J Mol Model 19(11):4781–4788. https://doi.org/10.1007/s00894-013-1937-2

    Article  CAS  PubMed  Google Scholar 

  33. Barnard A, Russo S, Snook I (2003) Ab initio modelling of boron and nitrogen in diamond nanowires. Philos. Mag. 83(19):2301–2309

    Article  CAS  Google Scholar 

  34. Barnard AS, Russo SP, Snook IK (2003) Ab initio modeling of diamond nanowire structures. Nano Lett 3(10):1323–1328. https://doi.org/10.1021/nl034169x

    Article  CAS  Google Scholar 

  35. Zhang J, Cao J, Chen X, Ding J, Zhang P, Ren W (2015) Diamond nanowires with nitrogen vacancy under a transverse electric field. Phys Rev B Condens Matter 91(4):045417. https://doi.org/10.1103/PhysRevB.91.045417

    Article  CAS  Google Scholar 

  36. Trejo A, Miranda A, Toscano-Medina L, Vázquez-Medina R, Cruz-Irisson M (2016) Optical vibrational modes of Ge nanowires: a computational approach. Microelectron Eng 159:215–220. https://doi.org/10.1016/j.mee.2016.04.024

    Article  CAS  Google Scholar 

  37. Trejo A, Ojeda M, Cuevas JL, Ál M, Pérez LA, Cruz-Irisson M (2015) Electronic structure and optical vibrational modes of 3C–SiC nanowires. Int J Nanotechonol 12(3-4):275–284. https://doi.org/10.1504/IJNT.2015.067212

    Article  CAS  Google Scholar 

  38. Ando Y, Nishibayashi Y, Sawabe A (2004) ‘Nano-rods’ of single crystalline diamond. Diam Relat Mater 13(4):633–637. https://doi.org/10.1016/j.diamond.2003.10.066

    Article  CAS  Google Scholar 

  39. Rivas JG, Muskens OL, Borgström MT, Diedenhofen SL, Bakkers EP (2008) Optical anisotropy of semiconductor nanowires. In: Wang Z (ed) One-dimensional nanostructures. Lecture notes in nanoscale science and technology, vol 3. Springer, New York, pp 127–145. https://doi.org/10.1007/978-0-387-74132-1_6

    Chapter  Google Scholar 

  40. Yu Y, Cui F, Sun J, Yang P (2016) Atomic structure of ultrathin gold nanowires. Nano Lett 16(5):3078–3084. https://doi.org/10.1021/acs.nanolett.6b00233

    Article  CAS  PubMed  Google Scholar 

  41. Zhu G, Zhang S, Xu Z, Ma J, Shen X (2011) Ultrathin ZnS single crystal nanowires: controlled synthesis and room-temperature ferromagnetism properties. J Am Chem Soc 133(39):15605–15612. https://doi.org/10.1021/ja2049258

    Article  CAS  PubMed  Google Scholar 

  42. Girard H, Arnault J, Perruchas S, Saada S, Gacoin T, Boilot J-P, Bergonzo P (2010) Hydrogenation of nanodiamonds using MPCVD: a new route toward organic functionalization. Diam Relat Mater 19(7):1117–1123. https://doi.org/10.1016/j.diamond.2010.03.019

    Article  CAS  Google Scholar 

  43. Sque S, Jones R, Briddon P (2006) Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces. Phys Rev B Condens Matter 73(8):085313. https://doi.org/10.1103/PhysRevB.73.085313

    Article  CAS  Google Scholar 

  44. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MI, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220(5/6):567–570. https://doi.org/10.1524/zkri.220.5.567.65075

    Article  CAS  Google Scholar 

  45. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  46. Rappe AM, Rabe KM, Kaxiras E, Joannopoulos J (1990) Optimized pseudopotentials. Phys Rev B 41(2):1227. https://doi.org/10.1103/PhysRevB.41.1227

    Article  CAS  Google Scholar 

  47. Hamann DR, Schlüter M, Chiang C (1979) Norm-conserving pseudopotentials. Phys Rev Lett 43(20):1494–1497. https://doi.org/10.1103/PhysRevLett.43.1494

    Article  CAS  Google Scholar 

  48. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B Condens Matter 13(12):5188. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  49. Pfrommer BG, Côté M, Louie SG, Cohen ML (1997) Relaxation of crystals with the quasi-Newton method. J Comput Phys 131(1):233–240. https://doi.org/10.1006/jcph.1996.5612

    Article  CAS  Google Scholar 

  50. Bruno M, Palummo M, Marini A, Del Sole R, Olevano V, Kholod AN, Ossicini S (2005) Excitons in germanium nanowires: quantum confinement, orientation, and anisotropy effects within a first-principles approach. Phys Rev B Condens Matter 72(15):153310. https://doi.org/10.1103/PhysRevB.72.153310

    Article  CAS  Google Scholar 

  51. Perdew JP (1985) Density functional theory and the band gap problem. Int J Quantum Chem 28(S19):497–523. https://doi.org/10.1002/qua.560280846

    Article  Google Scholar 

  52. Hasnip PJ, Refson K, Probert MIJ, Yates JR, Clark SJ, Pickard CJ (2014) Density functional theory in the solid state. Philos T Roy Soc A 372(2011). https://doi.org/10.1098/rsta.2013.0270

    Article  Google Scholar 

  53. Hedin L (1965) New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys Rev 139(3A):A796. https://doi.org/10.1103/PhysRev.139.A796

    Article  Google Scholar 

  54. Doherty MW, Manson NB, Delaney P, Hollenberg LCL (2011) The negatively charged nitrogen-vacancy centre in diamond: the electronic solution. New J Phys 13(2):025019. https://doi.org/10.1088/1367-2630/13/2/025019

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by multidisciplinary projects: IPN2016-1770 and IPN2016-1771 from Instituto Politécnico Nacional.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Trejo Baños.

Additional information

This paper belongs to Topical Collection QUITEL 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solano, J.R., Baños, A.T., Durán, Á.M. et al. DFT study of anisotropy effects on the electronic properties of diamond nanowires with nitrogen-vacancy center. J Mol Model 23, 292 (2017). https://doi.org/10.1007/s00894-017-3462-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3462-1

Keywords

Navigation