Skip to main content

Advertisement

Log in

Carbon dioxide capture by planar (AlN)n clusters (n=3–5)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Searching for materials and technologies of efficient CO2 capture is of the utmost importance to reduce the CO2 impact on the environment. Therefore, the (AlN)n clusters (n = 3–5) are researched using density functional theoretical calculations. The results of the optimization show that the most stable structures of (AlN)n clusters all display planar configurations at B3LYP and G3B3 methods, which are consistent with the reported results. For these planar clusters, we further systematically studied their interactions with carbon dioxide molecules to understand their adsorption behavior at the B3LYP/6–311+G(d,p) level, including geometric optimization, binding energy, bond index, and electrostatic. We found that the planar structures of (AlN)n (n = 3–5) can capture 3–5 CO2 molecules. The result indicates that (AlN)n (n = 3–5) clusters binding with CO2 is an exothermic process (the capture of every CO2 molecule on (AlN)n clusters releases at least 30 kcal mol-1 in relative free energy values). These analysis results are expected to further motivate the applications of clusters to be efficient CO2 capture materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haszeldine RS (2009) Science 325:1647–1652

    Article  CAS  Google Scholar 

  2. Keith DW (2009) Science 325:1654–1655

    Article  CAS  Google Scholar 

  3. Chu S, Majumdar A (2012) Nature 488:294–303

    Article  CAS  Google Scholar 

  4. Meyer J (2008) Nature 455:733

    Article  CAS  Google Scholar 

  5. Betts RA, Boucher O, Collins M, Cox PM, Falloon PD, Gedney N, Hemming DL, Huntingford C, Jones CD, Sexton DMH, Webb MJ (2007) Nature 448:1037

    Article  CAS  Google Scholar 

  6. Yazaydin AÖ, Snurr RQ, Park T-H, Koh K, Liu J, Levan MD, Benin AI, Jakubczak P, Lanuza M, Galloway DB et al. (2009) J Am Chem Soc 131:18198–18199

    Article  CAS  Google Scholar 

  7. Kim Y-H, Sun YY, Choi WI, Kang J, Zhang SB (2009) Phys Chem Chem Phys 11:11400–11403

    Article  CAS  Google Scholar 

  8. Sun YY, Kim Y-H, Zhang SB (2007) J Am Chem Soc 129:12606–12607

    Article  CAS  Google Scholar 

  9. Kim Y-H, Kang J, Wei S-H (2010) Phys Rev Lett 105:236105

    Article  Google Scholar 

  10. Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AO, Snurr RQ, O’Keeffe M, Kim J et al. (2010) Science 329:424–428

    Article  CAS  Google Scholar 

  11. Caskey SR, Wong-Foy AG, Matzger AJ (2008) J Am Chem Soc 130:10870–10871

    Article  CAS  Google Scholar 

  12. Dietzel PDC, Panella B, Hirscher M, Blom R, Fjellvag H (2006) Chem Commun 959–961

  13. Dietzel PDC, Morita Y, Blom R, Fjellvag H (2005) Angew Chem Int Ed 44:6354–6358

    Article  CAS  Google Scholar 

  14. Rosi NL, Kim J, Eddaoudi M, Chen B, O’Keeffe M, Yaghi OM (2005) J Am Chem Soc 127:1504–1518

    Article  CAS  Google Scholar 

  15. Zhou W, Wu H, Yildirim T (2008) J Am Chem Soc 130:15268–15269

    Article  CAS  Google Scholar 

  16. Shan MX, Xue QZ, Jing NN, Ling CC, Zhang T, Yan ZF, Zhen JT (2012) Nano 4:5477–5482

    CAS  Google Scholar 

  17. Schrier J (2011) ACS Appl Mater Interfaces 3:4451–4458

    Article  CAS  Google Scholar 

  18. Schrier J (2012) ACS Appl Mater Interfaces 4:3745–3752

    Article  CAS  Google Scholar 

  19. Cinke M, Li J, Bauschlicher CW, Ricca A, Meyyappan M (2003) Chem Phys Lett 376:761–766

    Article  CAS  Google Scholar 

  20. Su F, Lu C, Chung A-J, Liao C-H (2014) Appl Energy 113:706–712

    Article  CAS  Google Scholar 

  21. Zhang T, Xue Q, Zhang S, Dong M (2012) Nano Today 7:180–200

    Article  CAS  Google Scholar 

  22. Zhao J-X, Ding Y-H (2009) J Chem Theory Comput 5:1099–1105

    Article  CAS  Google Scholar 

  23. Zhang P, Hou XL, Mi JL, Jiang Q, Aslan H, Dong MD (2014) RSC Adv 4:48994–48999

    Article  CAS  Google Scholar 

  24. Jiao Y, Du AJ, Zhu ZH, Rudolph V, Smith SC (2010) J Phys Chem C 114:7846–7849

    Article  CAS  Google Scholar 

  25. Torrent-Sucarrat M, Varandas AJC (2014) J Phys Chem A 118:12256–12261

    Article  CAS  Google Scholar 

  26. Novoselov KS, Jiang D, Schedin F, Booth T, Khot-kevich VV, Morozov S, Geim AK (2005) Proc Natl Acad Sci U. S. A. 102:10451–10453

    Article  CAS  Google Scholar 

  27. Pacilé D, Meyer JC, Girit CÖ, Zettl A (2008) Appl Phys Lett 92:133104

    Article  Google Scholar 

  28. Nagashima A, Tejima N, Gamou Y, Kawai T, Oshima C (1995) Phys Rev Lett 75:3918–3921

    Article  CAS  Google Scholar 

  29. Guo H, Zhang W, Lu N, Zhuo ZW, Zeng XC, Wu XJ, Yang J (2015) J Phys Chem C 119:6912–6917

    Article  CAS  Google Scholar 

  30. Cao XZ, Chen MY, Ma J, Yin BQ, Xing XP (2017) Phys Chem Chem Phys 19:196–203

    Article  CAS  Google Scholar 

  31. Qu YH, Bian XF (2005) Spectrochim Acta A 61:1877–1880

    Article  Google Scholar 

  32. Costales A, Blanco MA, Francisco E, Pandey R, Pendás AM (2005) J Phys Chem B 109:24352–24360

    Article  CAS  Google Scholar 

  33. BelBruno JJ (1999) Chem Phys Lett 313:795

    Article  CAS  Google Scholar 

  34. Kandalam AK, Blanco MA, Pandey R (2002) J Phys Chem B 106:1945

    Article  CAS  Google Scholar 

  35. Jeffrey GA, Parry GS (1955) J Chem Phys 23:406

    Article  CAS  Google Scholar 

  36. Andrews L, Zhou MF, Chertihin GV, Bare WD (2000) J Phys Chem A 104:1656

    Article  CAS  Google Scholar 

  37. Costales A, Blanco MA, Francisco E, Pendás AM, Pandey R (2006) J Phys Chem B 110:4092

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc., Wallingford

  39. Salari AA (2017) Inorg Chim Acta 456:18

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Guo.

Electronic supplementary material

Fig. S1

(DOCX 866 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Wang, C. Carbon dioxide capture by planar (AlN)n clusters (n=3–5). J Mol Model 23, 288 (2017). https://doi.org/10.1007/s00894-017-3459-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3459-9

Keywords

Navigation