Skip to main content
Log in

Ab initio study of hydrogen bonding in the H3PO2 dimer and H3PO2–DMF complex

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The molecular structures and H-bonding interactions in the phosphinic acid dimer and the complex of phosphinic acid with N,N-dimethylformamide (DMF) were investigated by density functional theory calculations at the B3LYP level of theory. In order to better understand these phenomena, the individual molecules were also studied. The results were compared with previously obtained data for similar H-bonded complexes of phosphoric and phosphorous acids with DMF. Various correlations were found between geometric characteristics and parameters derived from Bader’s theory and natural bond orbital analysis.

Irina V. Fedorova and Lyubov P. Safonova.

Ab initio study of hydrogen bonding in the H3PO2 dimer and H3PO2–DMF complex.

The acids of phosphorus are considered suitable candidates for ionomers due to their efficient proton transport properties. In order to better understand their molecular structures and their H-bond characteristics in real liquids, the most stable configurations of the H3PO2 dimer and the H3PO2–DMF complex were examined using computational methods in quantum chemistry. It was found that the strength of the H-bonding interactions in these systems depends strongly on the environment

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2a–b
Fig. 3

Similar content being viewed by others

References

  1. Ewig CS, Van Wazer JR (1985) J. Am. Chem. Soc. 107:1965–1971

    Article  CAS  Google Scholar 

  2. Gonzalez L, Mo O, Yanez М, Elguero J (1998) J. Chem. Phys. 109:2685–2693

    Article  CAS  Google Scholar 

  3. Range K, McGrath MJ, Lopez X, York D (2004) J. Am. Chem. Soc. 126:1654–1665

    Article  CAS  Google Scholar 

  4. Heggen B, Roy S, Müller-Plathe F (2008) J. Phys. Chem. 112:14209–14215

    CAS  Google Scholar 

  5. Ahmadi I, Rahemi H, Tayyari SF (2005) J. Korean Chem. Soc. 49:129–137

    Article  CAS  Google Scholar 

  6. Joswig J-O, Hazebroucq S, Seifert G (2007) J. Mol. Struct. THEOCHEM 816:119–123

  7. Yekutiel M, Lane JR, Gupta P, Kjaergaard HG (2010) J. Phys. Chem. A 114:7544–7552

    Article  CAS  Google Scholar 

  8. Stefan T, Janoschek R (2000) J. Mol. Model. 6:282–288

    Article  CAS  Google Scholar 

  9. Korbridge DEC (1985) Phosphorus—an outline of its chemistry, biochemistry and technology, 3rd edn. Elsevier, Amsterdam

  10. Zhao TS, Kreuer K-D, Nguyen TV (2007) Advances in fuel cells, vol I. Elsevier, Oxford

  11. Dippel T, Kreuer KD, Lassègues JC, Rodriguez D (1993) Solid State Ionics 61:41–46

    Article  CAS  Google Scholar 

  12. Blessing RH (1988) Acta Cryst. B44:334–340

    Article  CAS  Google Scholar 

  13. Becker G, Hausen HD, Mundt O, Schwarz W, Wagner CT, Vogt T (1990) Z. Anorg. Allg. Chem. 591:17–31

    Article  CAS  Google Scholar 

  14. Iwadate Y, Tani Y, Fukushima K, Misawa M, Fukunaga T, Itoh K, Nakazawa T (2005) J Neutron Res. 13:139–144

  15. Williams JM, Peterson SW (1971) Spectrosc. Inorg. Chem. 2:1–56

  16. Detoni S, Hadzi D, Orel B (1976) J. Mol. Struct. 33:279–288

    Article  CAS  Google Scholar 

  17. Tsuchida E (2006) J. Phys. Soc. Jpn. 75:054801(5)

    Article  Google Scholar 

  18. Tromp R, Spieser S, Neilson G (1999) J. Chem. Phys. 110:2145–2150

    Article  CAS  Google Scholar 

  19. Vilciauskas L, Tuckerman ME, Melchior JP, Bester G, Kreuer KD (2013) Solid State Ionics 252:34–39

    Article  CAS  Google Scholar 

  20. Fadeeva JA, Safonova LP, Persson I (2010) Phys. Chem. Chem. Phys. 12:8977–8984

    Article  CAS  Google Scholar 

  21. Li S, Fried JR (2013) Macromol. Theory Simul. 22:410–425

  22. Shirata K, Kawauchi S (2015) J. Phys. Chem. B 119:592–603

    Article  CAS  Google Scholar 

  23. Khatuntseva EA, Krest’yaninov MA, Fedorova IV, Kiselev MG, Safonova LP (2015) Russ. J. Phys. Chem. A 89:2248–2253

    Article  CAS  Google Scholar 

  24. Fedorova IV, Krestyaninov MA, Kiselev MG, Safonova LP (2016) J. Mol. Struct. 1106:424–429

    Article  CAS  Google Scholar 

  25. Fedorova IV, Khatuntseva EA, Krest’yaninov MA, Safonova LP (2016) Russ. J. Phys. Chem. A 90:293–299

    Article  CAS  Google Scholar 

  26. Steiner T (2002) Angew. Chem. Int. Ed. 41:48–76

    Article  CAS  Google Scholar 

  27. Turi L (1996) J. Phys. Chem. 100:11285–11291

    Article  CAS  Google Scholar 

  28. Qian W, Krimm S (2001) J. Phys. Chem. A 105:5046–5053

    Article  CAS  Google Scholar 

  29. Wilson CC, Morrison CA (2002) Chem. Phys. Lett. 362:85–89

    Article  CAS  Google Scholar 

  30. Krawietz TR, Lin P, Lotterhos KE, Torres PD, Barich DH, Clearfield A, Haw JF (1998) J. Am. Chem. Soc. 120:8502–8511

    Article  CAS  Google Scholar 

  31. Zhang D, Yan L (2010) J. Phys. Chem. B 114:12234–12241

    Article  CAS  Google Scholar 

  32. Ilczyszyn MM (2002) J. Mol. Struct. 611:119–129

    Article  CAS  Google Scholar 

  33. Fedorova IV, Safonova LP (2016) Struct. Chem. 27:1189–1198

    Article  CAS  Google Scholar 

  34. Scheiner AC, Baker J, Andzelm JW (1997) J. Comput. Chem. 18:775–795

    Article  CAS  Google Scholar 

  35. Sharma A, Ohanessian G, Clavaguéra C (2014) J. Mol. Model. 20:2426–2434

    Article  Google Scholar 

  36. Vilciauskas L, Paddison SJ, Kreuer K-D (2009) J. Phys. Chem. A 113:9193–9201

    Article  CAS  Google Scholar 

  37. Krest’yaninov MA, Kiselev MG, Safonova LP (2015) Russ. J. Phys. Chem. A 89:608–615

    Article  Google Scholar 

  38. Weinhold F (1997) J. Mol. Struct. THEOCHEM 398-399:181–197

  39. Koch U, Popelier PLA (1995) J. Chem. Phys. 99:9747–9754

    Article  CAS  Google Scholar 

  40. Popelier PLA (1998) J. Phys. Chem. A 102:1873–1878

    Article  CAS  Google Scholar 

  41. Cossi M, Rega N, Scalmani G, Barone V (2003) J. Comput. Chem. 24:669–681

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision a.01. Gaussian, Inc., Wallingford

  43. Sousa CF, Fernandes PA, Ramos MJ (2007) J. Phys. Chem. A 111:10439–10452

    Article  CAS  Google Scholar 

  44. Lee C, Yang W, Parr RG (1988) Phys. Rev. B 37:785–789

    Article  CAS  Google Scholar 

  45. Becke AD (1993) J. Chem. Phys. 98:5648–5652

    Article  CAS  Google Scholar 

  46. Ditchfield R, Hehre WJ, Pople JA (1971) J. Chem. Phys. 54:724–728

    Article  CAS  Google Scholar 

  47. Safonova LP, Kiselev MG, Fedorova IV (2013) Pure Appl. Chem. 85:225–236

    CAS  Google Scholar 

  48. van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM, van Lenthe JH (1994) Chem. Rev. 94:1873–1885

  49. Boys S, Bernardi F (2002) Mol. Phys. 19:553–566

    Article  Google Scholar 

  50. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

  51. Keith TA (2010) AIMAll, version 10.05.04. aim.tkgristmill.com

  52. Espinosa E, Molins E, Lecomte C (1998) J Chem. Phys. Lett. 285:170–173

  53. Weinhold F, Landis CR (2005) Valency and bonding. A natural bond orbital donor–acceptor perspective. Cambridge University Press, Cambridge

  54. Williams JM (1966) Ph.D. thesis. Washington State University

  55. Schultz G, Hargittai I (1993) J. Phys. Chem. 97:4966–4969

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Russian Foundation for Basic Research (no. 15-43-03088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina V. Fedorova.

Electronic supplementary material

Table S1 shows the intramolecular distances for phosphoric, phosphorous, and phosphinic acids calculated at different levels of theory, and a comparison of those distances with the corresponding values obtained experimentally. Table S2 lists the frequency assignments for the H3PO2 monomer calculated with different methods, and compares them with the corresponding experimental data.

ESM 1

(DOC 54.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, I.V., Safonova, L.P. Ab initio study of hydrogen bonding in the H3PO2 dimer and H3PO2–DMF complex. J Mol Model 23, 220 (2017). https://doi.org/10.1007/s00894-017-3393-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3393-x

Keywords

Navigation