Skip to main content
Log in

Theoretical calculation of polarizability isotope effects

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We propose a scheme to estimate hydrogen isotope effects on molecular polarizabilities. This approach combines the any-particle molecular orbital method, in which both electrons and H/D nuclei are described as quantum waves, with the auxiliary density perturbation theory, to calculate analytically the polarizability tensor. We assess the performance of method by calculating the polarizability isotope effect for 20 molecules. A good correlation between theoretical and experimental data is found. Further analysis of the results reveals that the change in the polarizability of a X-H bond upon deuteration decreases as the electronegativity of X increases. Our investigation also reveals that the molecular polarizability isotope effect presents an additive character. Therefore, it can be computed by counting the number of deuterated bonds in the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wade D (1999) Deuterium isotope effects on noncovalent interactions between molecules. Chem Biol Interact 117:191. doi:10.1016/S0009-2797(98)00097-0

    Article  CAS  Google Scholar 

  2. Turowski M, Yamakawa N, Meller J, Kimata K, Ikegami T, Hosoya K, Tanaka N, Thornton ER (2003) Deuterium isotope effects on hydrophobic interactions: the importance of dispersion interactions in the hydrophobic phase. J Am Chem Soc 125:13836–13849. doi:10.1021/ja036006g

    Article  CAS  Google Scholar 

  3. Valleix A, Carrat S, Caussignac C, Léonce E, Tchapla A (2006) Secondary isotope effects in liquid chromatography behaviour of 2H and 3H labelled solutes and solvents. J Chromatogr A 1116:109. doi:10.1016/j.chroma.2006.03.078

    Article  CAS  Google Scholar 

  4. Di Palma S, Raijmakers R, Heck AJR, Mohammed S (2011) Evaluation of the deuterium isotope effect in zwitterionic hydrophilic interaction liquid chromatography separations for implementation in a quantitative proteomic approach. Anal Chem 83:8352. doi:10.1021/ac2018074

    Article  CAS  Google Scholar 

  5. Sinha P, Harding GW, Maiko K, Hiller W, Pasch H (2012) Comprehensive two-dimensional liquid chromatography for the separation of protonated and deuterated polystyrene. J Chromatogr A 1265:95. doi:10.1016/j.chroma.2012.09.088

    Article  CAS  Google Scholar 

  6. Szarka S, Prokai-Tatrai K, Prokai L (2014) Application of screening experimental designs to assess chromatographic isotope effect upon isotope-coded derivatization for quantitative liquid chromatography–mass spectrometry. Anal Chem 86:7033. doi:10.1021/ac501309s

    Article  CAS  Google Scholar 

  7. Jin Y, Wan HMJ, Matsuyama M, Watanabe K (2002) Isotope effects on hydrogen absorption by Pd–4at.%Pt alloy. J Alloys Compd 340:207. doi:10.1016/S0925-8388(01)02002-3

    Article  CAS  Google Scholar 

  8. Schüth C, Taubald H, Bolaño N, Maciejczyk K (2003) Carbon and hydrogen isotope effects during sorption of organic contaminants on carbonaceous materials. J Contam Hydrol 64:269. doi:10.1016/S0169-7722(02)00216-4

    Article  Google Scholar 

  9. Imfeld G, Kopinke F, Fischer A, Richnow H (2014) Carbon and hydrogen isotope fractionation of benzene and toluene during hydrophobic sorption in multistep batch experiments. Chemosphere 107:454. doi:10.1016/j.chemosphere.2014.01.063

    Article  CAS  Google Scholar 

  10. Mugridge JS, Bergman RG, Raymond KN (2010) High-precision measurement of isotope effects on noncovalent host–guest interactions. J Am Chem Soc 132:1182. doi:10.1021/ja905170x

    Article  CAS  Google Scholar 

  11. Mugridge JS, Bergman RG, Raymond KN (2012) Equilibrium isotope effects on noncovalent interactions in a supramolecular host–guest system. J Am Chem Soc 134:2057. doi:10.1021/ja2067324

    Article  CAS  Google Scholar 

  12. Liesenfeld A, Lützen A (2014) Molecular recognition of isomeric protonated amino acid esters monitored by ESI-mass spectrometry. Beilstein J Org Chem 10:825. doi:10.3762/bjoc.10.78

    Article  CAS  Google Scholar 

  13. Schramm VL (2007) Binding isotope effects: boon and bane. Curr Opin Chem Biol 11:529. doi:10.1016/j.cbpa.2007.07.013

    Article  CAS  Google Scholar 

  14. Świderek K, Paneth P (2013) Binding isotope effects. Chem Rev 113:7851. doi:10.1021/cr300515x

    Article  Google Scholar 

  15. Casimir HBG, Polder D (1948) The influence of retardation on the London–van der Waals forces. Phys Rev 13:360. doi:10.1103/PhysRev.73.360

    Article  Google Scholar 

  16. Bell RP (1942) Polarisibility and internuclear distance. Trans Faraday Soc 38:422. doi:10.1039/TF9423800422

    Article  CAS  Google Scholar 

  17. Rabinovich I (1970) Influence of Isotopy on the Physicochemical Properties of Liquids. Consultants Bureau, New York

    Google Scholar 

  18. Foster Smith M, Van Hook W (1989) Some measurements of H/D polarizability isotope effects using differential refractometry. Z Naturforsch A 44:371. doi:10.1515/zna-1989-0504

    Google Scholar 

  19. Van Hook W, Wolfsberg M (1994) Comments on H/D isotope effects of polarizabilities of small molecules. Correlation with virial coefficient, molar volume and electronic second moment isotope effect. Z Naturforsch A 49:563. doi:10.1515/zna-1994-4-508

    Article  CAS  Google Scholar 

  20. Wieczorek SA, Urbanczyk A, Van Hook W (1996) Application of interferometric continuous-dilution differential refractometry to some solutions, including isotopomer solutions: isotope effects on polarizability in liquids. J Chem Thermodyn 28:1009. doi:10.1006/jcht.1996.0086

    Article  CAS  Google Scholar 

  21. Ivanov E, Abrosimov V (2005) Effect of H/D isotope substitution on polarizability of methanol molecules. Russ Chem Bull 54:1987. doi:10.1007/s11172-006-0069-6

    Article  CAS  Google Scholar 

  22. Wolfsberg M, Van Hook W, Paneth P, Rebelo L (2010) Isotope effects in the chemical, geological and bio sciences. Springer, New York

    Google Scholar 

  23. Kaila R, Dixit L, Gupta PL (1977) On the molecular polarizabilities and intermolecular dispersion energies of deuterated hydrocarbons and related compounds. Acta Phys Hung 42:237. doi:10.1007/BF03157491

    Article  CAS  Google Scholar 

  24. Tachikawa M, Mori K, Nakai H, Iguchi K (1998) An extension of ab initio molecular orbital theory to nuclear motion. Chem Phys Lett 290:437. doi:10.1016/S0009-2614(98)00519-3

    Article  CAS  Google Scholar 

  25. Webb S, Iordanov T, Hammes-Schiffer S (2002) Multiconfigurational nuclear-electronic orbital approach: Incorporation of nuclear quantum effects in electronic structure calculations. J Chem Phys 117:4106. doi:10.1063/1.1494980

    Article  CAS  Google Scholar 

  26. Nakai H (2007) Nuclear orbital plus molecular orbital theory: Simultaneous determination of nuclear and electronic wave functions without Born–Oppenheimer approximation. Int J Quantum Chem 107:2849. doi:10.1002/qua.21379

    Article  CAS  Google Scholar 

  27. González S., Aguirre N, Reyes A (2008) Theoretical investigation of isotope effects: The any-particle molecular orbital code. Int J Quantum Chem 108:1742. doi:10.1002/qua.21584

    Article  Google Scholar 

  28. Ishimoto T, Tachikawa M, Nagashima U (2009) Review of multicomponent molecular orbital method for direct treatment of nuclear quantum effect. Int J Quantum Chem 109:2677. doi:10.1002/qua.22069

    Article  CAS  Google Scholar 

  29. Udagawa T, Tachikawa M (2009) Multi-Component Molecular Orbital Theory. Nova Science Publishers, New York

    Google Scholar 

  30. Ishimoto T, Tachikawa M, Nagashima U (2008) Simultaneous analytical optimization of variational parameters in Gaussian-type functions with full configuration interaction of multicomponent molecular orbital method by elimination of translational and rotational motions: Application to isotopomers of the hydrogen molecule. J Chem Phys 128:164118. doi:10.1063/1.2912939

    Article  Google Scholar 

  31. Tachikawa M (2002) Multi-component molecular orbital theory for electrons and nuclei including many-body effect with full configuration interaction treatment: Isotope effects on hydrogen molecules. Chem Phys Lett 360:494. doi:10.1016/S0009-2614(02)00881-3

    Article  CAS  Google Scholar 

  32. Tachikawa M (2002) Isotope effect and cluster size dependence for water and hydrated hydrogen halide clusters: multi-component molecular orbital approach. Mol Phys 100:881. doi:10.1080/00268970110099602

    Article  CAS  Google Scholar 

  33. Shibl MF, Tachikawa M, Kuhn O (2005) The geometric (H/D) isotope effect in porphycene: grid-based Born–Oppenheimer vibrational wavefunctions vs. multi-component molecular orbital theory. Phys Chem Chem Phys 7:1368. doi:10.1039/B500620A

    Article  CAS  Google Scholar 

  34. Udagawa T, Ishimoto T, Tokiwa H, Tachikawa M, Nagashima U (2006) Geometric isotope effect of various intermolecular and intramolecular C-H ⋅⋅⋅O hydrogen bonds, using the multicomponent molecular orbital method. J Phys Chem A 110:7279. doi:10.1021/jp0615656

    Article  CAS  Google Scholar 

  35. Moncada F, González S, Reyes A (2010) First principles investigation of hydrogen isotope effects in [XSO4-H-SO4X] (X= H,K) complexes. Mol Phys 108:1545. doi:10.1080/00268971003781589

    Article  CAS  Google Scholar 

  36. Moreno DV, González S.A., Reyes A (2010) Secondary hydrogen isotope effects on the structure and stability of cation- π complexes (cation = Li +, Na +, K + and π = acetylene, ethylene, benzene). J Phys Chem A 114:9231. doi:10.1021/jp103314p

    Article  CAS  Google Scholar 

  37. Moreno DV, González SA, Reyes A (2011) Turning symmetric an asymmetric hydrogen bond with the inclusion of nuclear quantum effects: The case of the [CN ⋅⋅⋅H⋅⋅⋅NC] complex. J Chem Phys 134:024115. doi:10.1063/1.3521272

    Article  Google Scholar 

  38. Ikabata Y, Imamura Y, Nakai H (2011) Interpretation of intermolecular geometric isotope effect in hydrogen bonds: Nuclear orbital plus molecular orbital study. J Phys Chem A 115:1433. doi:10.1021/jp111062n

    Article  CAS  Google Scholar 

  39. Kita Y, Kamikubo H, Kataoka M, Tachikawa M (2013) Theoretical analysis of the geometrical isotope effect on the hydrogen bonds in photoactive yellow protein with multi-component density functional theory. Chem Phys 419:50. doi:10.1016/j.chemphys.2012.11.022

    Article  CAS  Google Scholar 

  40. Kanematsu Y, Tachikawa M (2014) Development of multicomponent hybrid density functional theory with polarizable continuum model for the analysis of nuclear quantum effect and solvent effect on NMR chemical shift. J Chem Phys 140:164111. doi:10.1063/1.4872006

    Article  Google Scholar 

  41. Kita Y, Tachikawa M Nuclear quantum effects on molecular magnetic properties. J Mol Struc: THEOCHEM 912:2. doi:10.1016/j.theochem.2009.01.035

  42. Moncada F, Posada E, Flores-Moreno R, Reyes A (2012) Non-Born–Oppenheimer self-consistent field calculations with cubic scaling. Chem Phys 400:103. doi:10.1016/j.chemphys.2012.03.005

    Article  CAS  Google Scholar 

  43. Flores-Moreno R, Koster AM (2008) Auxiliary density perturbation theory. J Chem Phys 128:134105. doi:10.1063/1.2842103

    Article  Google Scholar 

  44. Carmona-Espíndola J, Flores-Moreno R, Köster AM (2010) Time-dependent auxiliary density perturbation theory. J Chem Phys 133:084102. doi:10.1063/1.3478551

    Article  Google Scholar 

  45. Köster AM (2003) Hermite Gaussian auxiliary functions for the variational fitting of the coulomb potential in density functional methods. J Chem Phys 118:9943. doi:10.1063/1.1571519

    Article  Google Scholar 

  46. Nakai H, Sodeyama K (2003) Many-body effects in nonadiabatic molecular theory for simultaneous determination of nuclear and electronic wave functions: Ab initio NOMO/MBPT and CC methods. J Chem Phys 118:1119. doi:10.1063/1.1528951

    Article  CAS  Google Scholar 

  47. Dunlap BI, Connolly JWD, Sabin JR (1979) On first-row diatomic molecules and local density models. J Chem Phys 71:4993. doi:10.1063/1.438313

    Article  CAS  Google Scholar 

  48. Mintmire JW, Dunlap BI (1982) Fitting the Coulomb potential variationally in linear-combination-of-atomic-orbitals density-functional calculations. Phys Rev A 25:88. doi:10.1103/PhysRevA.25.88

    Article  CAS  Google Scholar 

  49. Mintmire JW, Sabin JR, Trickey SB (1982) Local-density-functional methods in two-dimensionally periodic systems. Hydrogen and beryllium monolayers. Phys Rev B 26:1743. doi:10.1103/PhysRevB.26.1743

    Article  CAS  Google Scholar 

  50. Eichkorn K, Treutler O, Öhm H, Höser M, Ahlrichs R (1995) Auxiliary basis sets to approximate Coulomb potentials. Chem Phys Lett 240:283. doi:10.1016/0009-2614(95)00621-A

    Article  CAS  Google Scholar 

  51. Dunlap BI (2000) Robust and variational fitting: Removing the four-center integrals from center stage in quantum chemistry. J Mol Struc: THEOCHEM 529:37. doi:10.1016/S0166-1280(00)00528-5

    Article  CAS  Google Scholar 

  52. Köster AM, Reveles JU, del Campo JM (2004) Calculation of exchange-correlation potentials with auxiliary function densities. J Chem Phys 121:3417. doi:10.1063/1.1771638

    Article  Google Scholar 

  53. Szabo A, Ostlund N (1996) Modern quantum chemistry: introduction to advanced electronic structure theory. Dover Publications, New York

    Google Scholar 

  54. Dodds JL, McWeeny R, Sadlej AJ (1977) Self-consistent perturbation theory. Mol Phys 34:1779. doi:10.1080/00268977700102961

    Article  CAS  Google Scholar 

  55. Flores-Moreno R, Posada E, Moncada F, Romero J, Charry J, Díaz-Tinoco M, González SA, Aguirre NF, Reyes A (2014) Lowdin: The any particle molecular orbital code. Int J Quantum Chem 114:50. doi:10.1002/qua.24500

    Article  CAS  Google Scholar 

  56. Dirac P (1929) Quantum mechanics of many-electron systems. Proc R Soc London, Ser A 123:714. doi:10.1098/rspa.1929.0094

    Article  CAS  Google Scholar 

  57. Slater JC (1951) A simplification of the Hartree–Fock method. Phys Rev 81:385. doi:10.1103/PhysRev.81.385

    Article  CAS  Google Scholar 

  58. Vosko S, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can J Phys 58:1200. doi:10.1139/p80-159

    Article  CAS  Google Scholar 

  59. Calaminici P, Jug K, Köster AM (1998) Density functional calculations of molecular polarizabilities and hyperpolarizabilities. J Chem Phys 109:7756. doi:10.1063/1.477421

    Article  CAS  Google Scholar 

  60. Swart M, van Duijnen PT, Snijders JG (1998) Mean polarizabilities of organic molecules. A comparison of restricted Hartree–Fock, density functional theory and direct reaction field results. J Mol Struc: THEOCHEM 458:11. doi:10.1016/S0166-1280(98)00350-9

    Article  Google Scholar 

  61. Rappoport D, Furche F (2010) Property-optimized Gaussian basis sets for molecular response calculations. J Chem Phys 133:134105. doi:10.1063/1.3484283

    Article  Google Scholar 

  62. Calaminici P, Janetzko F, Köster AM, Mejia-Olvera R, Zuñiga Gutierrez B (2007) Density functional theory optimized basis sets for gradient corrected functionals: 3D transition metal systems. J Chem Phys 126:044108. doi:10.1063/1.2431643

    Article  Google Scholar 

  63. Johnson III RD (2003) in NIST Standard Reference Database, vol 101. Consultants Bureau, New York

    Google Scholar 

  64. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comp Chem 14:1347. doi:10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  65. Hoshino M, Tsukamoto Y, Nakai H (2007) Development of analytic energy gradient method in nuclear orbital plus molecular orbital theory. Int J Quantum Chem 107(14):2575. doi:10.1002/qua.21430

    Article  CAS  Google Scholar 

  66. De Lucia FC, Helminger P, Gordy W (1971) Submillimeter-wave spectra and equilibrium structures of the hydrogen halides. Phys Rev A 3:1849. doi:10.1103/PhysRevA.3.1849

    Article  Google Scholar 

  67. Bridge NJ, Buckingham AD (1966) The polarization of laser light scattered by gases. P Roy Soc A Math Phy 295:334. doi:10.1098/rspa.1966.0244

    Article  CAS  Google Scholar 

  68. Bose TK, Sochanski JS, Cole RH (1972) Dielectric and pressure virial coefficients of imperfect gases. V. Octopole moments of CH4 and CF4. J Chem Phys 57:3592. doi:10.1063/1.1678813

    Article  CAS  Google Scholar 

  69. Murphy WF (1977) The Rayleigh depolarization ratio and rotational Raman spectrum of water vapor and the polarizability components for the water molecule. J Chem Phys 67:5877. doi:10.1063/1.434794

    Article  CAS  Google Scholar 

  70. Hirschfelder JO, Curtis CF, Bird RB (1954) Molecular Theory of Gases and Liquids. Wiley Consultants Bureau, New York

    Google Scholar 

  71. Giguere PA (1983) Molecular association and structure of hydrogen peroxide. J Chem Educ 60:399. doi:10.1021/ed060p399

    Article  CAS  Google Scholar 

  72. Batsanov SS (1961) Refractometry and Chemical Structure. Consultants Bureau, New York

    Google Scholar 

  73. Applequist J, Carl JR, Fung KK (1972) Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities. J Am Chem Soc 94:2952. doi:10.1021/ja00764a010

    Article  CAS  Google Scholar 

  74. Hoshino M, Nishizawa H, Nakai H (2011) Rigorous non-Born–Oppenheimer theory: Combination of explicitly correlated Gaussian method and nuclear orbital plus molecular orbital theory. J Chem Phys 135:024111. doi:10.1063/1.3609806

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of Universidad Nacional de Colombia and Universidad de la Amazonia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Reyes.

Additional information

This paper belongs to Topical Collection Festschrift in Honor of Henry Chermette

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moncada, F., Flores-Moreno, R. & Reyes, A. Theoretical calculation of polarizability isotope effects. J Mol Model 23, 90 (2017). https://doi.org/10.1007/s00894-017-3236-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3236-9

Keywords

Navigation