Skip to main content
Log in

Rotovibrational states of the water molecule on the sun

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The infrared spectrum of water observed in sunspots is complex and dense, with bands separated by approximately 0.01 cm−1. For top asymmetrical molecules, there is no theoretical approach that allows for the calculation of rotovibrational energy with such precision. Experimentally derived rotovibracional energy levels of water at high temperatures combined with variational calculations have been used for the band assignments. These energy levels are employed to refine the analysis of a small portion of the infrared absorption spectrum. Such procedure has allowed for the identification of additional 55 bands to the 70 already identified as rotovibrational transitions of the water molecule. Our new assignments, which include pure and cross transitions, offer additional evidence of the existence of water on the sun, but above all they illustrate the complexity of the solar spectrum that involves states with higher levels of rotational excitation. Given the conditions on the sun, more molecules of water would occur in excited electronic states, which include apolar and paramagnetic states, generating intense bands in the spectrum. Since there is an analytical solution for the rotovibrational transitions of linear molecules, we were able to identify 16 bands relative to the excited electronic states 1B2 and 3A1 in the sunspot spectrum. Density functional B3LYP/AUG-cc-pVTZ calculations of the electric and magnetic dipole are employed to discuss some consequences of the presence of excited states of water in the dynamics of sunspots and solar magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wöhl H (1969) On H2O in sunspots. Sol Phys 9:394–396

    Article  Google Scholar 

  2. Russell HN (1934) Molecules in the sun and stars. Astrophys J 79:317–342

    Article  CAS  Google Scholar 

  3. Kuiper GP (1963) Infrared of stars and planets, II. Water vapor in omicron CETI. Commun Lunar Planet Lab 1:179–188

    Google Scholar 

  4. Tennyson J, Zobov NF, Williamson R et al (2001) Experimental energy levels of the water molecule. J Phys Chem Ref Data 30:735. doi:10.1063/1.1364517

    Article  CAS  Google Scholar 

  5. Karthikeyan B, Bagare SP, Rajamanickam N, Raja V (2009) On the search for BF, BH and BS molecular lines in sunspot spectra. Astropart Phys 31:6–12. doi:10.1016/j.astropartphys.2008.10.009

    Article  Google Scholar 

  6. Solanki SK (2003) Sunspots: an overview. Astron Astrophys Rev 11:153–286. doi:10.1007/s00159-003-0018-4

    Article  Google Scholar 

  7. Berdyugina SV, Solanki SK, Frutiger C (2003) The molecular Zeeman effect and diagnostics of solar and stellar magnetic fields. Astron Astrophys 412:513–527. doi:10.1051/0004-6361:20031473

    Article  CAS  Google Scholar 

  8. Penn MJ, Walton S, Chapman G et al (2003) Temperature dependence of molecular line strengths and Fe i 1565 nm Zeeman splitting in a sunspot. Sol Phys 213:55–67. doi:10.1023/A:1023271511373

    Article  CAS  Google Scholar 

  9. Gaur VP, Pande MC, Tripathi BM (1973) Molecular abundances in sunspots. Bull Astron Inst Czechoslov 24:138

    CAS  Google Scholar 

  10. Pande MC, Gaur VP (1975) CO2 and HCN in sunspots. Nature 253:104–104. doi:10.1038/253104a0

    Article  CAS  Google Scholar 

  11. Wallace L, Hinkle K (2001) Detection of the 1.6 μm E 4 Π– A 4 Π FeH system in sunspot and cool star spectra. Astrophys J 559:424–427. doi:10.1086/322382

    Article  CAS  Google Scholar 

  12. Bagare SP, Kumar KB, Rajamanickam N (2006) Identification of AlF molecular lines in sunspot umbral spectra. Sol Phys 234:1–20. doi:10.1007/s11207-006-0079-4

    Article  CAS  Google Scholar 

  13. Sriramachandran P, Bagare SP, Rajamanickam N, Balachandrakumar K (2008) Presence of LaO, ScO and VO molecular lines in sunspot umbral spectra. Sol Phys 252:267–281. doi:10.1007/s11207-008-9261-1

    Article  CAS  Google Scholar 

  14. Bernath PF (2002) The spectroscopy of water vapour: experiment, theory and applications. Phys Chem Chem Phys 4:1501–1509. doi:10.1039/b200372d

    Article  CAS  Google Scholar 

  15. Kisiel Z (2001) Assignment and analysis of complex rotational spectra. In: Spectrosc. from Sp. Springer Netherlands, Dordrecht, pp 91–106

  16. King GW (1947) The asymmetric rotor. VI. Calculation of higher energy levels by means of the correspondence principle. J Chem Phys 15:820–830. doi:10.1063/1.1746344

    Article  CAS  Google Scholar 

  17. Gora EK (1965) An asymptotic method in asymmetric rotor theory. J Mol Spectrosc 16:378–405. doi:10.1016/0022-2852(65)90130-X

    Article  CAS  Google Scholar 

  18. Marstokk K-M, Møllendal H (1969) Computer programs for the asymmetric rotor. J Mol Struct 4:470–472. doi:10.1016/0022-2860(69)85013-1

    Article  Google Scholar 

  19. King GW, Hainer RM, Cross PC (1943) The asymmetric rotor. I. Calculation and symmetry classification of energy levels. J Chem Phys 11:27–42. doi:10.1063/1.1723778

    Article  Google Scholar 

  20. Watson JKG (1977) Vibrational spectra and structure, vol 6. Elsevier, Amsterdam

    Google Scholar 

  21. Polyansky OL, Zobov NF, Viti S et al (1997) Water on the sun: line assignments based on variational calculations. Science 277:346–348. doi:10.1126/science.277.5324.346

    Article  CAS  Google Scholar 

  22. Polyansky OL, Zobov NF, Viti S et al (1997) High-temperature rotational transitions of water in sunspot and laboratory spectra. J Mol Spectrosc 186:422–447. doi:10.1006/jmsp.1997.7449

    Article  CAS  Google Scholar 

  23. Polyansky OL, Busler JR, Guo B et al (1996) The emission spectrum of hot water in the region between 370 and 930 cm−1. J Mol Spectrosc 176:305–315. doi:10.1006/jmsp.1996.0091

    Article  CAS  Google Scholar 

  24. Tennyson J, Polyansky OL (1998) Water on the sun: the sun yields more secrets to spectroscopy. Contemp Phys 39:283–294. doi:10.1080/001075198181955

    Article  CAS  Google Scholar 

  25. Cai Z-L, Tozer DJ, Reimers JR (2000) Time-dependent density-functional determination of arbitrary singlet and triplet excited-state potential energy surfaces: application to the water molecule. J Chem Phys 113:7084–7096. doi:10.1063/1.1312826

    Article  CAS  Google Scholar 

  26. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. doi:10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  27. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  28. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211. doi:10.1139/p80-159

    Article  CAS  Google Scholar 

  29. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270. doi:10.1063/1.448799

    Article  CAS  Google Scholar 

  30. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284. doi:10.1063/1.448800

    Article  CAS  Google Scholar 

  31. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299. doi:10.1063/1.448975

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB et al. (2003) Gaussian 03. Gaussian Inc, Wallingford

  33. Wallace L, Bernath P, Livingston W et al (1995) Water on the sun. Science 268:1155–1158. doi:10.1126/science.7761830

    Article  CAS  Google Scholar 

  34. Wallace L, Livingston W, Hinkle K, Bernath P (1996) Infrared spectral atlases of the sun from NOAO. Astrophys J Suppl Ser 106:165. doi:10.1086/192333

    Article  CAS  Google Scholar 

  35. Polyansky O, Zobov N, Viti S, Tennyson J (1998) Water vapor line assignments in the near infrared. J Mol Spectrosc 189:291–300. doi:10.1006/jmsp.1998.7557

    Article  CAS  Google Scholar 

  36. Tennyson J, Bernath PF, Brown LR et al (2014) A database of water transitions from experiment and theory (IUPAC technical report). Pure Appl Chem 86:71–83. doi:10.1515/pac-2014-5012

    CAS  Google Scholar 

  37. Wilson EB Jr, Decius JC, Cross PC (1980) Molecular vibrations: the theory of infrared and raman vibrational spectra. Dover Publications, New York

    Google Scholar 

  38. Cai R, Yang H, He J, Zhu W (2009) The effects of magnetic fields on water molecular hydrogen bonds. J Mol Struct 938:15–19. doi:10.1016/j.molstruc.2009.08.037

    Article  CAS  Google Scholar 

  39. Lozitsky VG (2016) Indications of 8-kilogauss magnetic field existence in the sunspot umbra. Adv Sp Res 57:398–407. doi:10.1016/j.asr.2015.08.032

    Article  CAS  Google Scholar 

  40. Hotta H, Rempel M, Yokoyama T (2016) Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations. Science 351:1427–1430. doi:10.1126/science.aad1893

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico for their financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio C. Pavão.

Additional information

This paper belongs to Topical Collection Brazilian Symposium of Theoretical Chemistry (SBQT 2015)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leite, B.S., Bastos, C.C. & Pavão, A.C. Rotovibrational states of the water molecule on the sun. J Mol Model 22, 295 (2016). https://doi.org/10.1007/s00894-016-3168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3168-9

Keywords

Navigation