Skip to main content
Log in

Comparative theoretical study of the structures and stabilities of four typical gadolinium carboxylates in different scintillator solvents

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structural properties and stabilities of four typical gadolinium carboxylates (Gd-CBX) in toluene, linear alkyl benzene (LAB), and phenyl xylyl ethane (PXE) solvents were theoretically studied using density functional theory (DFT/B3LYP with the basis sets 6-311G(d) and MWB54) and the polarizable continuum model (PCM). The average Gd–ligand interaction energies (E int, corrected for dispersion) and the values of the energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital (\( \varDelta \) HL) for the gadolinium complexes were calculated to compare the relative stabilities of the four Gd-CBX molecules in the three liquid scintillator solvents. According to the calculations, the values of E int and \( \varDelta \) HL for Gd-CBX in LAB are larger than the corresponding values in PXE and toluene. Gd-CBX may therefore be more compatible with LAB than with PXE and toluene. It was also found that, in the three scintillator solvents, the stabilities of the four Gd-CBX molecules increase in the order Gd-2EHA < Gd-2MVA < Gd-pivalate < Gd-TMHA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abe Y, Double Chooz Collaboration (2012) Phys Rev Lett 108:131801

    Article  CAS  Google Scholar 

  2. Reines F, Cowan CL, Harrison FB, Carter DS (1954) Rev Sci Instrum 25:1061

    Article  CAS  Google Scholar 

  3. Diven BC, Martin HC, Taschek RF, Terrell J (1958) Phys Rev 111:616

    Article  Google Scholar 

  4. An FP, Daya Bay Collaboration (2012) Phys Rev Lett 108:171803

    Article  Google Scholar 

  5. Ahn JK, Reno Collaboration (2012) Phys Rev Lett 108:191802

    Article  CAS  Google Scholar 

  6. Raghavan RS (1997) Phys Rev Lett 78:3618

    Article  CAS  Google Scholar 

  7. Arpesella C, (Borexino Collaboration) (2008) Phys Rev Lett 101:091302

    Article  CAS  Google Scholar 

  8. Reines F, Cowan CL (1956) Nature 178:446

    Article  CAS  Google Scholar 

  9. Frehaut J (1976) Nucl Inst Methods 135:511

    Article  CAS  Google Scholar 

  10. Yeh M, Garnov A, Hahn RL (2007) Nucl Inst Methods A 578:329

    Article  CAS  Google Scholar 

  11. Ding Y, Zhang Z, Liu J, Zhou P, Zhao Y (2008) Nucl Inst Methods A 584:238

    Article  CAS  Google Scholar 

  12. Novikova GY et al (2009) Russ J Inorg Chem 54:1082

    Article  Google Scholar 

  13. Danilov NA et al (2009) Radiochemistry 51:274

    Article  CAS  Google Scholar 

  14. Zoan TA, Kuzmina NP et al (1995) J Alloys Compd 225:396

    Article  CAS  Google Scholar 

  15. Belova NV, Girichev GV et al (2013) Struct Chem 24:901

    Article  CAS  Google Scholar 

  16. Belova NV, Sliznew VV et al (2011) Comput Theor Chem 967:199

    Article  CAS  Google Scholar 

  17. Troxler L, Dedieu A, Hutschka F, Wipff G (1998) J Mol Struct (THEOCHEM) 431:151

    Article  CAS  Google Scholar 

  18. Mayer F, Platas-Iglesias C et al (2012) Inorg Chem 51:170

    Article  CAS  Google Scholar 

  19. Esrafili MD, Alizadeh V (2012) Mol Phys 110:2239

    Article  CAS  Google Scholar 

  20. Perez-Mayoral E, Soriano E, Cerdan S, Ballesteros P (2006) Molecules 11:345

    Article  CAS  Google Scholar 

  21. Maron L, Eisenstein O (2000) J Phys Chem A 104:714

    Article  Google Scholar 

  22. Boehme C, Coupez B, Wipff B (2002) J Phys Chem A 106:6487

    Article  CAS  Google Scholar 

  23. Fernandez-Fernandez MC, Bastida R et al (2006) Inorg Chem 45:4484

    Article  CAS  Google Scholar 

  24. Frisch MJ et al (2004) Gaussian 03, rev. E01. Gaussian, Inc., Wallingford

  25. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  26. Perdew JP (1986) Phys Rev B 33:8822

    Article  Google Scholar 

  27. Adamo C, Scuseria GE, Barone V (1999) J Chem Phys 111:2889

    Article  CAS  Google Scholar 

  28. Pople JA, Head-Gordon M, Fox DJ et al (1989) J Chem Phys 90:5622

    Article  CAS  Google Scholar 

  29. MØller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  30. Pabst A (1943) J Chem Phys 11:145

    Article  CAS  Google Scholar 

  31. Dolg M, Stoll H, Savin A, Preuss H (1989) Theor Chim Acta 75:173

    Article  CAS  Google Scholar 

  32. Dolg M, Stoll M, Preuss H (1993) Theor Chim Acta 85:441

    Article  CAS  Google Scholar 

  33. Cao X, Dolg M (2003) Mol Phys 101:2427

    Article  CAS  Google Scholar 

  34. Ehlers AW et al (1993) Chem Phys Lett 208:111

    Article  CAS  Google Scholar 

  35. Cances MT, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032

    Article  CAS  Google Scholar 

  36. Cossi M, Barone V, Mennucci B, Tomasi J (1998) Chem Phys Lett 286:253

    Article  CAS  Google Scholar 

  37. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151

    Article  CAS  Google Scholar 

  38. Dean JA (1992) Lange’s handbook of chemistry, 14th edn. McGraw-Hill, New York

    Google Scholar 

  39. Huang P, Cao H et al (2011) Theor Chem Accounts 129:229

    Article  CAS  Google Scholar 

  40. Patel MJ, Shrinet V (1999) In: Proc 13th Int Conf on Dielectric Liquids (ICDL’99), Nara, Japan, 20–25 July 1999, p 20

  41. Grimme S et al (2011) DFT-D3: a dispersion correction for density functionals, Hartree–Fock and semi-empirical quantum chemical methods. http://www.thch.uni-bonn.de/tc/dftd3

  42. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  43. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456

    Article  CAS  Google Scholar 

  44. Pearson RG (1988) J Am Chem Soc 110:2092

    Article  CAS  Google Scholar 

  45. Hess BA, Schaad LJ (1971) J Am Chem Soc 93:2413

    Article  CAS  Google Scholar 

  46. Aihara J (1999) J Phys Chem A 103:7487

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pin-Wen Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, PW. Comparative theoretical study of the structures and stabilities of four typical gadolinium carboxylates in different scintillator solvents. J Mol Model 22, 65 (2016). https://doi.org/10.1007/s00894-016-2932-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-2932-1

Keywords

Navigation