Skip to main content
Log in

On the properties of Se ⋯N interaction: the analysis of substituent effects by energy decomposition and orbital interaction

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The nature and strength of intermolecular Se ⋯N interaction between selenium-containing compounds HSeX (X = CH3, NH2, CF3, OCH3, CN, OH, NO2, Cl, F), and NH3 have been investigated at the MP2/aug-cc-pVDZ level. The Se ⋯N interaction is found to be dependent on the substituent groups, which greatly affect the positive electrostatic potential of Se atoms and the accepting electron ability of X-Se σ antibonding orbital. Energy decomposition of the Se ⋯N interaction reveals that electrostatic and induction forces are comparable in the weak-bonded complexes and induction becomes more significant in the complexes with strong electron-withdrawing substituents. Natural bond orbital (NBO) analysis indicates that the primary source of the induction is the electron transfer from the N lone pair to the X-Se σ antibonding orbital. The geometry of the complex and the interaction directionality of NH3 to X-Se bond can be regarded as a consequence of the exchange-repulsion. The topological analysis on the electron density reveals the nature of closed-shell interaction in these X-Se ⋯N contacts. The Se ⋯N interaction in the complexes with the strong electron-withdrawing substituent has a partly covalent character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nogueira CW, Zeni G, Rocha JBT (2004) Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev 104:6255–6286

    Article  CAS  Google Scholar 

  2. Mugesh G, du Mont WW, Sies H (2001) Chemistry of biologically important synthetic organoselenium compounds. Chem Rev 101:2125–2179

    Article  CAS  Google Scholar 

  3. Hatfield DL, Berry MJ, Gladyshev VN (2012) Selenium: its molecular biology and role in human health, 3rd edn. Springer, New York

    Book  Google Scholar 

  4. Mukherjee AJ, Zade SS, Singh HB, Sunoj RB (2010) Organoselenium chemistry: role of intramolecular interactions. Chem Rev 110:4357–4416

    Article  CAS  Google Scholar 

  5. Levason W, Orchard SD, Reid G (2002) Recent developments in the chemistry of selenoethers and telluroethers. Coord Chem Rev 225:159–199

    Article  CAS  Google Scholar 

  6. Panda A (2009) Developments in tellurium containing macrocycles. Coord Chem Rev 253:1947–1965

    Article  CAS  Google Scholar 

  7. Singh FV, Wirth T (2012). In: Wirth T (ed) Organoselenium chemistry: synthesis and reactions. Wiley, Weinheim

  8. Alberto EE, Braga AL, Detty MR (2012) Imidazolium-containing diselenides for catalytic oxidations with hydrogen peroxide and sodium bromide in aqueous solutions. Tetrahedron 68:10476–10481

    Article  CAS  Google Scholar 

  9. Balkrishna SJ, Prasad CD, Panini P, Detty MR, Chopra D, Kumar S (2012) Isoselenazolones as catalysts for the activation of bromine: bromolactonization of alkenoic acids and oxidation of alcohols. J Org Chem 77:9541–9552

    Article  CAS  Google Scholar 

  10. Bryce MR (1991) Recent progress on conducting organic charge-transfer salts. Chem Soc Rev 20:355–391

    Article  CAS  Google Scholar 

  11. Kanatzidis MG, Huang SP (1994) Coordination chemistry of heavy polychalcogenide ligands. Coord Chem Rev 130:509–621

    Article  CAS  Google Scholar 

  12. Back TC (ed) (1999) Organoselenium chemistry: a practical approach, 1st edn. Oxford, Oxford

    Google Scholar 

  13. Xie R, Kolb U, Li J, Basché T, Mews A (2005) Synthesis and characterization of highly luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J Am Chem Soc 127:7480–7488

    Article  CAS  Google Scholar 

  14. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  CAS  Google Scholar 

  15. Li JJ, Wang YA, Guo W, Keay JC, Mishima TD, Johnson MB, Peng X (2003) Large-scale synthesis of nearly monodisperse CdSe/CdS Core/Shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J Am Chem Soc 125:12567–12575

    Article  CAS  Google Scholar 

  16. Allen PM, Bawendi MG (2008) Ternary I-III-VI quantum dots luminescent in the red to near-infrared. J Am Chem Soc 130:9240–9241

    Article  CAS  Google Scholar 

  17. Pati PB, Zade SS (2014) Benzoselenadiazole containing donor-acceptor-donor small molecules: nonbonding interactions, packing patterns, and optoelectronic properties. Cryst Growth Des 14:1695–1700

    Article  CAS  Google Scholar 

  18. Lindner BD, Coombs BA, Schaffroth M, Engelhart JU, Tverskoy O, Rominger F, Hamburger M, Bunz UHF (2013) From thia- to selenadiazoles: changing interaction priority. Org Lett 15:666–669

    Article  CAS  Google Scholar 

  19. Paulmier C (1986) Selenium reagents and intermediates in organic synthesis. Pergamon, Oxford

    Google Scholar 

  20. Chivers T (2005) A guide to chalcogen-nitrogen chemistry. World Scientific, Singapore

    Book  Google Scholar 

  21. Liotta DC (1987) Organoselenium chemistry, 1st edn. Wiley, New York

    Google Scholar 

  22. Zeni G, Lüdtke DS, Panatieri RB, Braga AL (2006) Vinylic tellurides: from preparation to their applicability in organic synthesis. Chem Rev 106:1032–1076

    Article  CAS  Google Scholar 

  23. Devillanova FA (2007) Handbook of chalcogen chemistry: new perspectives in sulfur, selenium and tellurium. RSC, Cambridge

    Google Scholar 

  24. Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9:775–806

    Article  CAS  Google Scholar 

  25. Mugesh G, Singh HB (2000) Synthetic organoselenium compounds as antioxidants: glutathione peroxidase activity. Chem Soc Rev 29:347–357

    Article  CAS  Google Scholar 

  26. Sies H, Masumoto H (1996) Ebselen as a glutathione peroxidase mimic and as a scavenger of peroxynitrite. Adv Pharmacol 38:229–246

    Article  Google Scholar 

  27. Flohe L, Günzler WA, Schock HH (1973) Glutathione peroxidase: a selenoenzyme. FEBS Lett 32:132–134

    Article  CAS  Google Scholar 

  28. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  CAS  Google Scholar 

  29. Jacob C, Giles GI, Giles NM, Sies H (2003) Schwefel und selen: bedeutung der oxidationsstufe für struktur und funktion von proteinen. Angew Chem 115:4890–4907

    Article  Google Scholar 

  30. Birringer M, Pilawa S, Flohé L (2002) Trends in selenium biochemistry. Nat Prod Rep 19:693–718

    Article  CAS  Google Scholar 

  31. Epp O, Ladenstein R, Wendel A (1983) The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur J Biochem 133:51–69

    Article  CAS  Google Scholar 

  32. Ren B, Huang W, Åkesson B, Ladenstein R (1997) The crystal structure of seleno-glutathione peroxidase from human plasma at 2.9-Å resolution. J Mol Biol 268:869–885

    Article  CAS  Google Scholar 

  33. Wu ZP, Hilvert D (1990) Selenosubtilisin as a glutathione peroxidase mimic. J Am Chem Soc 112:5647–5648

    Article  CAS  Google Scholar 

  34. House KL, Dunlap RB, Odom JD, Wu ZP, Hilvert D (1992) Structural characterization of selenosubtilisin by 77Se NMR spectroscopy. J Am Chem Soc 114:8573–8579

    Article  CAS  Google Scholar 

  35. Syed R, Wu ZP, Hogle JM, Hilvert D (1993) Crystal structure of selenosubtilisin at 2.0-Å resolution. Biochemistry 32:6157–6164

    Article  CAS  Google Scholar 

  36. Mugesh G, Panda A, Singh HB, Punekar NS, Butcher RJ (2001) Glutathione peroxidase-like antioxidant activity of diaryl diselenides: a mechanistic study. J Am Chem Soc 123:839–850

    Article  CAS  Google Scholar 

  37. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  38. Reed AE, Weinhold F, Curtiss LA, Pochatko DJ (1986) Natural bond orbital analysis of molecular interactions: theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3. J Chem Phys 84:5687–5705

    Article  CAS  Google Scholar 

  39. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford, New York

    Google Scholar 

  40. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  41. Sarma BK, Mugesh G (2009) Theoretical investigation on the effect of different nitrogen donors on intramolecular Se ⋯N interactions. ChemPhysChem 10:3013–3020

    Article  CAS  Google Scholar 

  42. Behera RN, Panda A (2012) Effect of chelate ring and rigidity on Se ⋯N interactions: a computational study. RSC Adv 2:6948–6956

    Article  CAS  Google Scholar 

  43. Murray JS, Lane P, Clark P, Politzer P (2007) σ-hole bonding: molecules containing group VI atoms. J Mol Model 13:1033–1038

    Article  CAS  Google Scholar 

  44. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  45. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 13:11178–11189

    Article  Google Scholar 

  46. Murray JS, Macaveiu L, Politzer P (2014) Factors affecting the strengths of σ-hole electrostatic potentials. J Comput Sci 5:590–596

    Article  Google Scholar 

  47. Adhikari U, Scheiner S (2012) Substituent effects on Cl ⋯N, S ⋯N, and P ⋯N noncovalent bonds. J Phys Chem A 116:3487–3497

    Article  CAS  Google Scholar 

  48. Scheiner S (2011) Effects of substituents upon the P ⋯N noncovalent interaction: the limits of its strength. J Phys Chem A 115:11202

    Article  CAS  Google Scholar 

  49. Frisch MJ el at (2009) Gaussian 09, Revision D.01, Gaussian Inc. Wallingford, CT, USA

  50. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622

    Article  Google Scholar 

  51. Ruiz E, Salahub DR, Vela A (1996) Charge-transfer complexes: stringent tests for widely used density functionals. J Phys Chem 100:12265–12276

    Article  CAS  Google Scholar 

  52. Osuna R, Hernández V, Navarrete J, D’Oria E, Novoa J (2011) Theoretical evaluation of the nature and strength of the F ⋯F intermolecular interactions present in fluorinated hydrocarbons. Theor Chem Acc 128:541–553

    Article  CAS  Google Scholar 

  53. Hermida-Ramón JM, Cabaleiro-Lago EM, Rodríguez-Otero J (2005) Theoretical characterization of structures and energies of benzene-(H2S) n and (H2S) n (n = 1-4) clusters. J Chem Phys 122:204315

    Article  Google Scholar 

  54. Riley K, Murray J, Fanfrlík J, Řezáč J, Solá R, Concha M, Ramos F, Politzer P (2013) Halogen bond tunability II: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds. J Mol Model 19:4651–4659

    Article  CAS  Google Scholar 

  55. Biswal HS, Wategaonkar S (2009) Sulfur, not too far behind O, N, and C:SH ⋯π hydrogen bond. J Phys Chem A 113:12774–12782

    Article  CAS  Google Scholar 

  56. Riley KE, Op’t Holt BT, Merz KM (2007) Critical assessment of the performance of density functional methods for several atomic and molecular properties. J Chem Theory Comput 3:407–433

    Article  CAS  Google Scholar 

  57. Chudzinski MG, McClary CA, Taylor MS (2011) Anion receptors composed of hydrogen- and halogen-bond donor groups: modulating selectivity with combinations of distinct noncovalent interactions. J Am Chem Soc 133:10559–10567

    Article  CAS  Google Scholar 

  58. Hyla-Kryspin I, Haufe G, Grimme S (2008) MP2 and QCISD(T) study on the convergence of interaction energies of weak O-H ⋯F-C, C-H ⋯O, and C-H ⋯F-C hydrogen bridges. Chem Phys 346:224–236

    Article  CAS  Google Scholar 

  59. Scheiner S (2011) On the properties of X ⋯N noncovalent interactions for first-, second-, and third-row X atoms. J Chem Phys 134:164313

    Article  Google Scholar 

  60. Shirhatti PR, Maity DK, Bhattacharyya S, Wategaonkar S (2014) C-H ⋯N hydrogen-bonding interaction in 7-azaindole:CHX3 (X= F, Cl) complexes. ChemPhysChem 15:109–117

    Article  CAS  Google Scholar 

  61. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  62. Savin A, Silvi B, Coionna F (1996) Topological analysis of the electron localization function applied to delocalized bonds. Can J Chem 74:1088–1096

    Article  CAS  Google Scholar 

  63. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  64. Moszynski R, Wormer PES, Jeziorski B, van der Avoird A (1995) Symmetry-adapted perturbation theory of nonadditive three-body interactions in van der Waals molecules. I. General theory. J Chem Phys 103:8058–8074

    Article  CAS  Google Scholar 

  65. Williams HL, Chabalowski CF (2001) Using Kohn-Sham orbitals in symmetry-adapted perturbation theory to investigate intermolecular interactions. J Phys Chem A 105:646–659

    Article  CAS  Google Scholar 

  66. Heßelmann A Jansen G (2002) First-order intermolecular interaction energies from Kohn-Sham orbitals. Chem Phys Lett 357:464–470

    Article  Google Scholar 

  67. Heßelmann A, Jansen G (2002) Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn-Sham density functional theory. Chem Phys Lett 362:319–325

    Article  Google Scholar 

  68. Heßelmann A, Jansen G (2003) The helium dimer potential from a combined density functional theory and symmetry-adapted perturbation theory approach using an exact exchange-correlation potential. Phys Chem Chem Phys 5:5010–5014

    Article  Google Scholar 

  69. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M (2012) Molpro: a general-purpose quantum chemistry program package. WIREs Comput Mol Sci 2:242–253

    Article  CAS  Google Scholar 

  70. Grüning M, Gritsenko OV, Van Gisbergen SJA, Baerends EJ (2001) Shape corrections to exchange-correlation potentials by gradient-regulated seamless connection of model potentials for inner and outer region. J Chem Phys 114:652–660

    Article  Google Scholar 

  71. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6169

    Article  CAS  Google Scholar 

  72. Jeziorski B, Szalewicz K (2002). In: Wilson S (ed) Symmetry-adapted perturbation theory. In handbook of molecular physics and quantum chemistry. Wiley, Chichester

  73. Stone AJ (2013) Are halogen bonded structures electrostatically driven J Am Chem Soc 135:7005–7009

    Article  CAS  Google Scholar 

  74. Bondi A (1964) Van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  75. Clark T, Hennemann M, Murray J, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  76. Karthikeyan S, Sedlak R, Hobza P (2011) On the nature of stabilization in weak, medium, and strong charge-transfer complexes: CCSD(T)/CBS and SAPT calculations. J Phys Chem A 115:9422–9428

    Article  CAS  Google Scholar 

  77. Munusamy E, Sedlak R, Hobza P (2011) On the nature of the stabilization of benzene ⋯dihalogen and benzene ⋯dinitrogen complexes: CCSD(T)/CBS and DFT-SAPT calculations. ChemPhysChem 12:3253–3261

    Article  CAS  Google Scholar 

  78. Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21:52

    Article  Google Scholar 

  79. Popelier PLA (2002) Atoms in molecules: an introduction. Prentice Hall, UK

    Google Scholar 

  80. Gillespie RJ, Popelier PLA (2011) Chemical bonding and molecular geometry. Oxford, New York

    Google Scholar 

  81. Santi C, Santoro S, Tiecco M (2011) The 15th international electronic conference on synthetic organic chemistry (ECSOC 15)

  82. Han N, Zeng YL, Li XY, Zheng SJ, Meng LP (2013) Enhancing effects of electron-withdrawing groups and metallic ions on halogen bonding in the YC6F4X⋯C2H8N2 (X = Cl, Br, I; Y = F, CN, NO2, LiNC+, NaNC+) complex. J Phys Chem A 117:12959–12968

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from the National Nature Science Foundation of China (grant nos. 21073077 and 21173101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Liu, R., Tang, J. et al. On the properties of Se ⋯N interaction: the analysis of substituent effects by energy decomposition and orbital interaction. J Mol Model 22, 29 (2016). https://doi.org/10.1007/s00894-015-2901-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2901-0

Keywords

Navigation