Skip to main content
Log in

Theoretical investigation of the aromaticity and electronic properties of protonated and unprotonated molecules in the series hexaphyrin(1.0.0.1.0.0) to hexaphyrin(1.1.1.1.1.1)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A series of hexaphyrins with different meso-carbon atoms and their protonated structures were investigated using density functional theory (DFT) and time-dependent DFT. Frontier molecular orbitals (FMOs), aromaticity, and electronic spectra were investigated systematically before and after protonation. The FMO energy gaps before and after protonation were different for the antiaromatic molecules, while they were only slightly different for the aromatic molecules. By analyzing the electronic spectra of the aromatic molecules, the absorption peaks in the Q-like and B-like bands were not significantly different before and after protonation. However, the absorption peaks of the antiaromatic molecules were clearly different before and after protonation in both the Q-like and B-like bands. [24]Hexaphyrin (1.0.1.0.1.0) has 24 π-electrons and is Hückel antiaromatic. However, the absorption spectrum of protonated [24]hexaphyrin (1.0.1.0.1.0) showed aromaticity. In addition, these conclusions were generally consistent with the FMOs, nucleus-independent chemical shifts, harmonic oscillator model of aromaticity, and absorption spectra. Although protonated [24]hexaphyrin (1.0.1.0.1.0) has 24 π-electrons and is Hückel antiaromatic, it has Möbius aromaticity because of the single-sided Möbius topological structure. This explains why [24]hexaphyrin (1.0.1.0.1.0) has diatropic ring currents in solvent. To the best of our knowledge, this system is the smallest Möbius aromatic molecule among the many uncoordinated extended porphyrins.

These conclusions are generally consistent with the FMOs, nucleus-independent chemical shifts, harmonic oscillator model of aromaticity, and absorption spectra. Although protonated [24]hexaphyrin (1.0.1.0.1.0) has 24 π-electrons and is Hückel antiaromatic, it has Möbius aromaticity because of the single-sided Möbius topological structure. The maximum absorption peak of molecule 3b at 728 nm is more than 200 nm away from the peak location of the antiaromaticity molecule 3a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a,b

Similar content being viewed by others

References

  1. Jasat A, Dolphin D (1997) Chem Rev 97:2267–2340

    Article  CAS  Google Scholar 

  2. Misra R, Chandrashekar TK (2008) Acc Chem Res 41:265–279

    Article  CAS  Google Scholar 

  3. Shin JY, Kim KS, Yoon MC, Lim JM, Yoon ZS, Osuka A, Kim D (2010) Chem Soc Rev 39:2733–3336

    Article  Google Scholar 

  4. Stępień M, Sprutta N, Latos-Grażyński L (2011) Angew Chem Int Ed 50:4288–4340

    Article  Google Scholar 

  5. First reported by Woodward RB (1966) in: Aromaticity: an International Symposium, Sheffield, UK

  6. King MM (1970) PhD Dissertation, Harvard University, Cambridge, MA

  7. Reddy JS, Anand VG (2009) J Am Chem Soc 131:15433–15439

    Article  CAS  Google Scholar 

  8. Zhang Z, Cha WY, Williams NJ, Rush EL, Ishida M, Lynch VM, Kim D, Sessler JL (2014) J Am Chem Soc 136:7591–7594

    Article  CAS  Google Scholar 

  9. Blusch LK, Craigo KE, Diaconescu VM, McQuarters AB, Bill E, Dechert S, DeBeer S, Lehnert N, Meyer F (2013) J Am Chem Soc 135:13892–13899

    Article  CAS  Google Scholar 

  10. Fliegl H, Sundholm D, Taubert S, Pichierri F (2010) J Phys Chem A 114:7153–7156

    Article  CAS  Google Scholar 

  11. Sankar J, Mori S, Saito S, Rath H, Suzuki M, Inokuma Y, Shinokubo H, Kim KS, Yoon ZS, Shin JY, Lim JM, Matsuzaki Y, Matsushita O, Muranaka A, Kobayashi N, Kim D, Osuka A (2008) J Am Chem Soc 130:13568–13579

    Article  CAS  Google Scholar 

  12. Kim KS, Yoon ZS, Ricks AB, Shin JY, Mori S, Sankar J, Saito S, Jung YM, Wasielewski MR, Osuka A, Kim D (2009) J Phys Chem A 113:4498–4506

    Article  CAS  Google Scholar 

  13. Yoon MC, Kim P, Yoo H, Shimizu S, Koide T, Tokuji S, Saito S, Osuka A, Kim D (2011) J Phys Chem B 115:14928–14937

    Article  CAS  Google Scholar 

  14. Alonso M, Geerlings P, DeProft F (2014) Phys Chem Chem Phys 16:14396–14407

    Article  CAS  Google Scholar 

  15. Sun G, Li H, Jiang S, Wang X, Liu C, Fu Q (2011) Comput Theor Chem 976:68–75

    Article  CAS  Google Scholar 

  16. Kohler T, Seidel D, Lynch V, Arp FO, Ou Z, Kadish KM, Sessler JL (2003) J Am Chem Soc 125:6872–6873

    Article  Google Scholar 

  17. Melfi PJ, Kim SK, Lee JT, Bolze F, Seidel D, Lynch VM, Veauthier JM, Gaunt AJ, Neu MP, Ou Z, Kadish KM, Fukuzumi S, Ohkubo K, Sessler JL (2007) Inorg Chem 46:5143–5145

    Article  CAS  Google Scholar 

  18. Hannah S, Seidel D, Sessler JL (2001) Inorg Chim Acta 317:211–217

    Article  CAS  Google Scholar 

  19. Sessler JL, Weghorn SJ, Hisaeda Y (1995) Chem Eur J 1:56–67

    Article  CAS  Google Scholar 

  20. Sessler JL, Gebauer A, Guba A, Scherer M, Lynchet V (1998) Inorg Chem 37:2073–2076

    Article  CAS  Google Scholar 

  21. Sessler JL, Melfi PJ, Lnch VM (2007) J Porphyrins Phthalocyanines 11:287–293

    Article  CAS  Google Scholar 

  22. Sessler JL, Seidel D, Vivian AE (2001) Angew Chem Int Ed 40:591–594

    Article  CAS  Google Scholar 

  23. Sessler JL, Melfi PJ, Tomat E, Lynch VM (2007) Dalton Trans 6:629–632

    Article  Google Scholar 

  24. Sessler JL, Weghorn SJ, Morishima T, Rosingana M, Lynch V, Lee V (1992) J Am Chem Soc 114:8306–8307

    Article  CAS  Google Scholar 

  25. Sessler JL, Morishima T, Lynch V (1991) Angew Chem Int Ed 30:977–980

    Article  Google Scholar 

  26. Shimizu S, Taniguchi R, Osuka A (2005) Angew Chem Int Ed 44:2225–2229

    Article  CAS  Google Scholar 

  27. Sessler JL, Seidel D, Bucher C, Lynch V (2000) Chem Commun 16:1473–1474

    Article  Google Scholar 

  28. Sessler JL, Seidel D, Bucher C, Lynch V (2001) Tetrahedron 57:3743–3752

    Article  CAS  Google Scholar 

  29. Zhu XJ, Fu ST, Wong WK (2006) Angew Chem Int Ed 45:3150–3154

    Article  CAS  Google Scholar 

  30. Osuka A, Saito S (2011) Chem Commun 47:4330–4339

    Article  CAS  Google Scholar 

  31. Neves MGPMS, Tomé AC, Silvestre AJD, Silva AMS, Félix V, Cavaleiro JAS, Drew MGB (1999) Chem Commun 4:385–386

    Article  Google Scholar 

  32. Shimizu S, Aratani N, Osuka A (2006) Chem Eur J 12:4909–4918

    Article  CAS  Google Scholar 

  33. Suzuki M, Osuka A (2007) Chem Eur J 13:196–202

    Article  CAS  Google Scholar 

  34. Sessler JL, Melfi PJ, Seidel D, Gorden AEV, Ford DK, Palmer PD, Tait CD (2004) Tetrahedron 60:11089–11097

    Article  CAS  Google Scholar 

  35. Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785–789

    Article  Google Scholar 

  36. Becke AD (1993) J Phys Chem 98:5648–5652

    Article  CAS  Google Scholar 

  37. Hu XB, Liu CY, Wu YT, Zhang ZB (2011) J Phys Chem C 115:23913–23921

    Article  CAS  Google Scholar 

  38. Thomas S, Pati YA, Ramasesha S (2013) J Phys Chem A 117:7804–7809

    Article  CAS  Google Scholar 

  39. Krygowski TM, Cyranski MK (1996) Tetrahedron 52:10255–10264

    Article  CAS  Google Scholar 

  40. Krygowski TM, Cyranski MK (2001) Chem Rev 101:1385–1420

    Article  CAS  Google Scholar 

  41. Ditchfield RM (1972) J Chem Phys 56:5688–5691

    Article  CAS  Google Scholar 

  42. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  43. Gisbergen SJAV, Kootstra F, Schipper PRT, Gritsenko OV, Snijders JG, Baerends EJ (1998) Phys Rev A 57:2556–2571

    Article  Google Scholar 

  44. Jamorski C, Casida ME, Salahub DR (1996) J Chem Phys 104:5134–5147

    Article  CAS  Google Scholar 

  45. Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09, Revision A.02. Gaussian, Inc, Wallingford

    Google Scholar 

  47. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin, Madison

    Google Scholar 

  48. Schleyer PR, Maerker C, Dransfeld A, Jiao H, Hommes NJRE (1996) J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  49. Schleyer PR (2001) Chem Rev 101:1115–1117

    Article  CAS  Google Scholar 

  50. Schleyer PR, Jiao H, Hommes NJRE, Malkin VG, Malkina OL (1997) J Am Chem Soc 119:12669–12670

    Article  CAS  Google Scholar 

  51. Matito E, Poater J, Duran M, Solà M (2005) J Mol Struc THEOCHEM 727:165–171

    Article  CAS  Google Scholar 

  52. Feixas F, Matito E, Poater J, Solà M (2008) J Comput Chem 29:1543–1554

    Article  CAS  Google Scholar 

  53. Heilbronner E (1964) Tetrahedron Lett 29:1923–1928

    Article  Google Scholar 

  54. Kalinowska M, Siemieniuk E, Kostro A, Lewandowski W (2006) J Mol Struc THEOCHEM 761:129–141

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Nature Science Foundation of China (NSFC) (21401007) and the “12th Five-Year Plan” Science and Technology Research Projects of the Education Department of Jilin Province (2014) (503#)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, G., Duan, XX., Yu, CH. et al. Theoretical investigation of the aromaticity and electronic properties of protonated and unprotonated molecules in the series hexaphyrin(1.0.0.1.0.0) to hexaphyrin(1.1.1.1.1.1). J Mol Model 21, 315 (2015). https://doi.org/10.1007/s00894-015-2862-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2862-3

Keywords

Navigation