Skip to main content
Log in

Introducing “UCA-FUKUI” software: reactivity-index calculations

  • Software Report
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A new software (UCA-FUKUI) has been developed to facilitate the theoretical study of chemical reactivity. This program can calculate global parameters like hardness, softness, philicities, and Fukui condensed functions, and also local parameters from the condensed functions. To facilitate access to the program we have developed a very easy-to-use interface. We have tested the performance of the software by calculating the global and local reactivity indexes of a group of representative molecules. Finite difference and frontier molecular orbital methods were compared and their correlation tested. Finally, we have extended the analysis to a set of ligands of importance in coordination chemistry, and the results are compared with the exact calculation. As a general trend, our study shows the existence of a high correlation between global parameters, but a weaker correlation between local parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  2. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Perturbative perspectives on the chemical reaction prediction problem. Int J Quantum Chem 101:520–534

    Article  CAS  Google Scholar 

  3. Johnson PA, Bartolotti LJ, Ayers PW, Fievez T, Geerlings P (2012) Charge density and chemical reactivity: a unified view from conceptual DFT". In: Gatti C, Macchi P (eds) Modern charge density analysis. Springer, New York, pp 715–764

    Google Scholar 

  4. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  5. Gazquez JL (2008) Perspectives on the density functional theory of chemical reactivity. J Mex Chem Soc 52:3–10

    CAS  Google Scholar 

  6. Liu SB (2009) Conceptual density functional theory and some recent developments. Acta Phys -Chim Sin 25:590–600

    CAS  Google Scholar 

  7. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  8. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  9. Pearson RG (1968) Hard and soft acids and bases. J Chem Educ 9:581–587

    Article  Google Scholar 

  10. Chattaraj PK, Lee H, Parr RG (1991) HSAB principle. J Am Chem Soc 113:1855–1856

    Article  CAS  Google Scholar 

  11. Ayers PW (2007) The physical basis of the hard/soft acid/base principle. Faraday Discuss 135:161–190

    Article  CAS  Google Scholar 

  12. Chattaraj PK, Ayers PW, Melin J (2007) Further links between the maximum hardness principle and the hard/soft acid/base principle: insights from hard/soft exchange reactions. PCCP 9:3853–3856

    Article  CAS  Google Scholar 

  13. Ayers PW, Parr RG, Pearson RG (2006) Elucidating the hard/soft acid/base principle: a perspective based on half-reactions. J Chem Phys 124:194107

    Article  Google Scholar 

  14. Ayers PW (2005) An elementary derivation of the hard/soft-acid/base principle. J Chem Phys 122:141102

    Article  Google Scholar 

  15. Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855

    Article  CAS  Google Scholar 

  16. Pearson RG (1987) Recent advances in the concept of hard and soft acids and bases. J Chem Educ 64:561–567

    Article  CAS  Google Scholar 

  17. Pearson RG, Palke WE (1992) Support for a principle of maximum hardness. J Phys Chem 96:3283–3285

    Article  CAS  Google Scholar 

  18. Ayers PW, Parr RG (2000) Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J Am Chem Soc 122:2010–2018

    Article  CAS  Google Scholar 

  19. Chattaraj PK, Ayers PW (2005) The maximum hardness principle implies the hard/soft acid/base rule. J Chem Phys 123:086101

    Article  Google Scholar 

  20. Pearson RG (1999) Maximum chemical and physical hardness. J Chem Educ 76:267–275

    Article  CAS  Google Scholar 

  21. Chattaraj PK (1996) The maximum hardness principle: an overview. Proc Indian Natl Sci Acad A 62:513–531

    CAS  Google Scholar 

  22. Torrent-Sucarrat M, Luis JM, Duran M, Sola M (2002) Are the maximum hardness and minimum polarizability principles always obeyed in nontotally symmetric vibrations? J Chem Phys 117:10561–10570

    Article  CAS  Google Scholar 

  23. Torrent-Sucarrat M, Luis JM, Duran M, Sola M (2001) On the validity of the maximum hardness and minimum polarizability principles for nontotally symmetric vibrations. J Am Chem Soc 123:7951–7952

    Article  CAS  Google Scholar 

  24. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  25. Meng-yao S, Da-wei X, Bing Y, Zheng Y, Ping L, Jian-li L, Zhen S (2013) An efficiently cobalt-catalyzed carbonylative approach to phenylacetic acid derivatives. Tetrahedron 69:7264–7268

    Article  Google Scholar 

  26. Allison TC, Tong YJ (2013) Application of the condensed Fukui function to predict reactivity in core–shell transition metal nanoparticles. Electrochim Acta 101:334–340

    Article  CAS  Google Scholar 

  27. Salgado-Morán G, Ruiz-Nieto S, Gerli-Candia L, Flores-Holguín N, Favila-Pérez A, Glossman-Mitnik D (2013) Computational nanochemistry study of the molecular structure and properties of ethambutol. J Mol Model 19:3507–3515

    Article  Google Scholar 

  28. Rincon E, Zuloaga F, Chamorro E (2013) Global and local chemical reactivities of mutagen X and simple derivatives. J Mol Model 19:2573–2582

    Article  CAS  Google Scholar 

  29. Obot IB, Gasem ZM (2014) Theoretical evaluation of corrosion inhibition performance of some pyrazine derivatives. Corros Sci 83:359–366

    Article  CAS  Google Scholar 

  30. Parr RG, Szentpaly LV, Liu SB (1999) Electrophilicity Index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  31. Liu SB (2009) Electrophilicity. In: Chattaraj PK (ed) Chemical reactivity theory: a density functional view. Taylor and Francis, Boca Raton, p 179

    Google Scholar 

  32. Chattaraj PK, Giri S (2009) Electrophilicity index within a conceptual DFT framework. Ann Rep Prog Chem C 105:13–39

    Article  CAS  Google Scholar 

  33. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091

    Article  CAS  Google Scholar 

  34. Chattaraj PK, Maiti B, Sarkar U (2003) Philicity: a unified treatment of chemical reactivity and selectivity. J Phys Chem A 107:4973–4975

    Article  CAS  Google Scholar 

  35. Parr R, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press

  36. Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49:1691–1694

    Article  CAS  Google Scholar 

  37. Yang WT, Zhang YK, Ayers PW (2000) Degenerate ground states and fractional number of electrons in density and reduced density matrix functional theory. Phys Rev Lett 84:5172–5175

    Article  CAS  Google Scholar 

  38. Ayers PW (2008) The continuity of the energy and other molecular properties with respect to the number of electrons. J Math Chem 43:285–303

    Article  CAS  Google Scholar 

  39. Mulliken RS (1934) A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys 2:782

    Article  CAS  Google Scholar 

  40. Iczkowski RP, Margrave JL (1961) Electronegativity. J Am Chem Soc 83:3547–3551

    Article  CAS  Google Scholar 

  41. Sen KD, Jørgensen CK (1987) Electronegativity, structure and bonding. Springer, Berlin

    Google Scholar 

  42. Pearson RG (1997) Chemical hardness: applications from molecules to solids. Wiley-VCH, Weinheim

    Book  Google Scholar 

  43. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874

    Article  CAS  Google Scholar 

  44. Janak JF (1978) Proof that.vdelta.E/.vdelta.ni = .epsilon.i in density-functional theory. Phys Rev B 18(12):7165–7168

    Article  CAS  Google Scholar 

  45. Koopmans T (1933) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1:104–113

    Article  CAS  Google Scholar 

  46. Almbladh CO, Von Barth U (1985) Exact results for the charge and spin-densities, exchange- correlation potentials, and density-functional eigenvalues. Phys Rev B 31:3231–3244

    Article  CAS  Google Scholar 

  47. Savin A, Umrigar CJ, Gonze X (1998) Relationship of Kohn-Sham eigenvalues to excitation energies. Chem Phys Lett 288(2–4):391–395

    Article  CAS  Google Scholar 

  48. Cohen AJ, Mori-Sanchez P, Yang WT (2008) Fractional charge perspective on the band gap in density-functional theory. Phys Rev B 77:115123

    Article  Google Scholar 

  49. Kohn W, Sham L (1965) J Phys Rev 140:1133

    Article  Google Scholar 

  50. Liu S (2009) Chemical reactivity theory a density functional view, Chapt 13. CRC Press, Boca raton

  51. Domingo LR, Sáez JA, Pérez P (2007) A comparative analysis of the electrophilicity. Chem Phys Lett 438:341–345

    Article  CAS  Google Scholar 

  52. Yang WT, Parr RG, Pucci R (1984) Electron density, Kohn-Sham frontier orbitals, and Fukui functions. J Chem Phys 81:2862–2863

    Article  CAS  Google Scholar 

  53. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049

    Article  CAS  Google Scholar 

  54. Ayers PW, Levy M (2000) Perspective on "density functional approach to the frontierelectron theory of chemical reactivity". Theor Chem Accounts 103:353–360

    Article  CAS  Google Scholar 

  55. Yang W, Parr RG (1985) Proc Natl Acad Sci 82:6723

    Article  CAS  Google Scholar 

  56. Chandra AK, Nguyen MT (2008) Fukui function and local softness. In: Chattaraj PK (ed) Chemical reactivity theory: a density-functional view. Taylor and Francis, New York, pp 163–178

    Google Scholar 

  57. Morell C, Grand A, Toro-Labbe (2005) A new dual descriptor for chemical reactivity. J Phys Chem A 109:205–212

    Article  CAS  Google Scholar 

  58. Tognetti V, Morell C, Ayers PW, Jouberta L, Chermetteb H (2013) A proposal for an extended dual descriptor: a possible solution when frontier molecular orbital theory fails. Phys Chem Chem Phys 15:14465–14475

    Article  CAS  Google Scholar 

  59. Zielinski F, Tognetti V, Joubert L (2012) Condensed descriptors for reactivity: a methodological study. Chem Phys Lett 527:67–72

    Article  CAS  Google Scholar 

  60. Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708–5711

    Article  CAS  Google Scholar 

  61. Mendizabal F, Donoso D, Burgos D (2011) Chem Phys Lett 514:374–378

    Article  CAS  Google Scholar 

  62. Pérez P, Contreras R (1998) A theoretical analysis of the gas-phase protonation. Chem Phys Lett 293:239–244

    Article  Google Scholar 

  63. Burgos D, Olea-Azar C, Mendizabal F (2012) Theoretical study of the local reactivity of electrophiles. J Mol Model 18:2021–2029

    Article  CAS  Google Scholar 

  64. Chattaraj PK, Maiti B, Sarkar U (2003) A_multiphilic_descriptor for chemical reactivity and selectivity. J Phys Chem A 107:4973

    Article  CAS  Google Scholar 

  65. Pilaquinga F, Araya A, Meneses L (2007) Aplicación del Nuevo Índice de Dureza Local a Sustratos Presentes en Reacciones de Adición Electrofílica tipo Markovnikov. Rev Tecnol ESPOL 20:157–162

    Google Scholar 

  66. Meneses L, Tiznado W, Contreras R, Fuentealba P (2004) Chem Phys Lett 383:181

    Article  CAS  Google Scholar 

  67. Meneses L, Araya A, Pilaquinga F, Espín M, Carrillo P, Sánchez F (2010) Theoretical studies of reactivity and selectivity in some organic reactions. Int J Quantum Chem 110:2360–2370

    CAS  Google Scholar 

  68. Berkowitz M, Ghosh SK, Parr RG (1985) On the concept of local hardness in chemistry. J Am Chem Soc 107:6811–6814

    Article  CAS  Google Scholar 

  69. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, CheesemanJR, Montgomery JA, Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian Inc, Wallingford, CT

  70. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02, Gaussian Inc, Wallingford, CT

  71. Fuentealba P, Pérez P, Contreras R (2000) On the condensed Fukui function. J Chem Phys 113:2544–2551

    Article  CAS  Google Scholar 

  72. Domingo LR, Pérez P, Contreras R (2004) Reactivity of the carbon–carbon double bond towards nucleophilic additions. Tetrahedron 60:585–591

    Google Scholar 

  73. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr., Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian Inc, Pittsburgh, PA

  74. Bultinck P, Fias S, Alsenoy CV, Ayers PW, Carbó-Dorca R (2007) Critical thoughts on computing atom condensed Fukui functions. J Chem Phys 127:034102

    Article  Google Scholar 

  75. Hartshorn RM, Zibaseresht R (2006) ARKIVOC 7:104

    Google Scholar 

  76. Breu J, Zwicknagel A, Naturforsch Z (2004) B Chem Sci 59:1015

    CAS  Google Scholar 

  77. Farah AA, Zobi F, Stynes DV, Lough AJ, Pietro WJ (2001) Acta Crystallogr Sect E: Struct Rep Online 57:m274

    Article  CAS  Google Scholar 

  78. Berry JF, Cotton FA, Murillo CA (2004) Inorg Chim Acta 357:3847

    Article  CAS  Google Scholar 

  79. Bozic-Weber B, Constable EC, Housecroft CE, Neuburger M, Price JR (2010) Dalton Trans 39:3585

    Article  CAS  Google Scholar 

  80. Hoertz PG, Staniszewski A, Marton A, Higgins GT, Incarvito CD, Rheingold AL, Meyer GJ (2006) J Am Chem Soc 128:8234

    Article  CAS  Google Scholar 

  81. Ryabov AD, Sukharev VS, Alexandrova L, Le Lagadec R, Pfeffer M (2001) Inorg Chem 40:6529

    Article  CAS  Google Scholar 

  82. Aakeroy CB, Beatty AM, Leinen DS (1999) Angew Chem 38:1815

    Article  CAS  Google Scholar 

  83. Hoffart DJ, Habermehl NC, Loeb SJ (2007) Dalton Trans 2870

  84. Korenev SV, Vasil'chenko DB, Baidina IA, Filatov EY, Venediktov AB, Nauk IA, Khim S (2008) Russ Chem Bull 1607

  85. Manner VW, DiPasquale AG, Mayer JM (2008) J Am Chem Soc 130:7210

    Article  CAS  Google Scholar 

  86. Constable EC, Dunphy EL, Housecroft CE, Neuburger M, Schaffner S, Schaper F, Batten SR (2007) Dalton Trans 4323

  87. Echegaray E, Rabi S, Cardenas C, Zadeh FH, Rabi N, Lee S, Anderson JSM, Toro-Labbe A, Ayers PW (2014) In pursuit of negative Fukui functions: molecules with very small band gaps. J Mol Model 20:2162. doi:10.1007/s00894-014-2162-3

    Article  Google Scholar 

  88. Fuentealba P, Florez E, Tiznado W (2010) Topological analysis of the Fukui function. J Chem Theory Comput 6:1470–1478

    Article  CAS  Google Scholar 

  89. Dennington R,oy; Keith T, Millam J (2009) Gauss View 5.0. Semichem Inc, Shawnee Mission, KS

  90. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular orbital methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724

    Article  CAS  Google Scholar 

  91. Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. 12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  92. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods. 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  93. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse function-augmented basis-sets for anion calculations. 3. The 3-21+G basis set for 1st-row elements, Li-F. J Comput Chem 4:294–301

    Article  CAS  Google Scholar 

  94. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  95. Roothaan CCJ (1951) Rev Mod Phys 23:69

    Article  CAS  Google Scholar 

  96. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–52

    Article  CAS  Google Scholar 

  97. Yanai T, Tew D, Handy N (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. M. Fernández-Núñez, whose suggestions were greatly appreciated. Calculations were done through CICA (Centro Informático Científico de Andalucía) and through “Centro de Supercomputación de la Universidad de Cádiz”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Sánchez-Márquez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Local Fukui Function f− calculated for the L1-8 ligands with the methods: frontier molecular orbital (FMO) (Eq.  26 ), finite difference (FD) (Eq.  18 ), frozen orbital approximation of Fukui (Eq.  24 ) and exactly calculated (Eq.  14 ). (DOC 2222 kb)

Fig. S2

Condensed Fukui function f− (Eq.  26 ) calculated with the frontier molecular orbital method for the L1-8 ligands. (DOC 44 kb)

Fig. S3

Dyes type ligands L1-8. (DOC 212 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Márquez, J., Zorrilla, D., Sánchez-Coronilla, A. et al. Introducing “UCA-FUKUI” software: reactivity-index calculations. J Mol Model 20, 2492 (2014). https://doi.org/10.1007/s00894-014-2492-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2492-1

Keywords

Navigation