Skip to main content
Log in

Probing the structural and electronic properties of bimetallic chromium-gold clusters Cr m Au n (m + n ≤ 6): comparison with pure chromium and gold clusters

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Bimetallic chromium-gold Cr m Au n (m + n ≤ 6) clusters are systematically investigated using the density functional theory at PW91P86 level with LanL2TZ basis set to understand the evolution of various structural, electronic, magnetic, and energetic properties as a function of size (m + n) and composition (m/n) of the system. Theoretical results show a logical evolution of the properties depending on the size and the composition of the system. Cr m clusters clearly prefer 3D structures while Au n clusters favor planar configurations. The geometry of the bimetallic Cr m Au n clusters mainly depends on their composition, i.e., clusters enriched in Cr atoms prefer 3D structures while increasing Au contents promotes planar configurations. The stability is maximized when the composition of binary Cr m Au n clusters is nearly balanced. Meanwhile, the number of hetero Cr−Au bonds and charge transfer from Cr to Au are maximized for clusters with m ≈ n. The most probable dissociation channels of the Cr m Au n clusters are calculated and analyzed. Natural population analysis reveals that Au atoms tend to be negatively charged while Cr atoms tend to be positively charged. Combined with the trend that Au atoms favor the surface/edges/vertices and Cr atoms tend to be inside, the outer part of the cluster tends to be negatively charged, and the inner part tends to be positively charged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Valden M, Lai X, Goodman DW (1998) Science 281:1647–1650

    Article  CAS  Google Scholar 

  2. Hu M, Chen J, Li ZY, Au L, Hartland GV, Li X, Marquez M, Xia Y (2006) Chem Soc Rev 35:1084–1094

    Article  CAS  Google Scholar 

  3. Wang T, Hu XG, Dong SJ (2006) J Phys Chem B 110:16930–16936

    Article  CAS  Google Scholar 

  4. Noonan KJT, Gillon BH, Cappello V, Gates DP (2008) J Am Chem Soc 130:12876–12877

    Article  CAS  Google Scholar 

  5. Hakkinen H (2008) Chem Soc Rev 37:1847–1859

    Article  Google Scholar 

  6. Liu HQ, Tian Y, Xia PP (2008) Langmuir 24:6359–6366

    Article  CAS  Google Scholar 

  7. Shuford KL, Meyer KA, Li CC, Cho SO, Whitten WB, Shaw RW (2009) J Phys Chem A 113:4009–4014

    Article  CAS  Google Scholar 

  8. Teles JH, Brode S, Chabanas M (1998) Angew Chem 110:1475–1478

    Article  Google Scholar 

  9. Molina LM, Hammer B (2003) Phys Rev Lett 90:206102

    Article  CAS  Google Scholar 

  10. Yoon B, Hakkinen H, Landman U, Worz AS, Amonietti JM, Abbet S, Judai K, Heiz U (2005) Science 307:403–407

    Article  CAS  Google Scholar 

  11. Graciani J, Oviedo J, Sanz JF (2006) J Phys Chem B 110:11600–11603

    Article  CAS  Google Scholar 

  12. Torres MB, Fernandez EM, Balbas LC (2008) J Phys Chem A 112:6678–6689

    Article  CAS  Google Scholar 

  13. Ackerson CJ, Jadzinsky PD, Jensen GJ, Kornberg RD (2006) J Am Chem Soc 128:2635–2640

    Article  CAS  Google Scholar 

  14. McRae R, Lai B, Vogt S, Fahrni CJ (2006) J Struct Biol 155:22–29

    Article  CAS  Google Scholar 

  15. Shaw CF III (1999) Chem Rev 99:2589–2600

    Article  CAS  Google Scholar 

  16. Fernandez EM, Soler JM, Garzon IL, Balbas LC (2004) Phys Rev B 70:165403

    Article  Google Scholar 

  17. Li XB, Wang HY, Yang XD, Zhu ZH, Tang YJ (2007) J Chem Phys 126:084505

    Article  Google Scholar 

  18. Remacle F, Kryachko ES (2005) J Chem Phys 122:044304

    Article  CAS  Google Scholar 

  19. Gilb S, Weis P, Furche F, Ahlrichs R, Kappes MM (2002) J Chem Phys 116:4094–4101

    Article  CAS  Google Scholar 

  20. Hakkinen H, Yoon B, Landman U, Li X, Zhai HJ, Wang LS (2003) J Phys Chem A 107:6168–6175

    Article  Google Scholar 

  21. Furche F, Ahlrichs R, Weis P, Jacob C, Gilb S, Bierweiler T, Kappes MM (2002) J Chem Phys 117:6982–6990

    Article  CAS  Google Scholar 

  22. Johansson MP, Lechtken A, Schooss D, Kappes MM, Furche F (2008) Phys Rev A 77:053202

    Article  Google Scholar 

  23. Xing X, Yoon B, Landman U, Parks JH (2006) Phys Rev B 74:165423

    Article  Google Scholar 

  24. Woldeghebriel H, Kshirsagar A (2007) J Chem Phys 127:224708

    Article  Google Scholar 

  25. Majumder C, Kulshreshtha SK (2006) Phys Rev B 73:155427

    Article  Google Scholar 

  26. Majumder C (2007) Phys Rev B 75:235409

    Article  Google Scholar 

  27. Majumder C, Kandalam AK, Jena P (2006) Phys Rev B 74:205437

    Article  Google Scholar 

  28. Cui LF, Lin YC, Sundholm D, Wang LS (2007) J Phys Chem A 111:7555–7561

    Article  CAS  Google Scholar 

  29. Fa W, Dong JM (2008) J Chem Phys 128:144307

    Article  Google Scholar 

  30. Neukermans S, Janssens E, Tanaka H, Silverans RE, Lievens P (2003) Phys Rev Lett 90:033401

    Article  CAS  Google Scholar 

  31. Torres MB, Fernandez EM, Balbas LC (2005) Phys Rev B 71:155412

    Article  Google Scholar 

  32. Yuan DW, Wang Y, Zeng Z (2005) J Chem Phys 122:114310

    Article  CAS  Google Scholar 

  33. Wang HQ, Kuang XY, Li HF (2009) J Phys Chem A 113:14022–14028

    Article  CAS  Google Scholar 

  34. Li YF, Kuang XY, Wang SJ, Zhao YR (2010) J Phys Chem A 114:11691–11698

    Article  CAS  Google Scholar 

  35. Wang HQ, Kuang XY, Li HF (2010) Phys Chem Chem Phys 12:5156–5165

    Article  CAS  Google Scholar 

  36. Lu P, Kuang XY, Mao AJ, Wang ZH, Zhao YR (2011) Mol Phys 109:2057–2068

    Article  CAS  Google Scholar 

  37. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  38. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533–16539

    Article  CAS  Google Scholar 

  39. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  40. Hay PJ, Wadt WR (1985) J Chem Phys 82:284–298

    Google Scholar 

  41. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  42. Roy LE, Hay PJ, Martin RL (2008) J Chem Theory Comput 4:1029–1031

    Article  CAS  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB et al. (2004) Gaussian 03 Revision E.01. Gaussian, Inc, Wallingford, CT

  44. Reed AE, Curtiss LA, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  45. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  46. Casey SM, Leopold DG (1993) J Phys Chem 97:816–830

    Article  CAS  Google Scholar 

  47. Morse MD (1986) Chem Rev 86:1049–1109

    Article  CAS  Google Scholar 

  48. Wang SY, Yu JZ, Mizuseki H, Sun Q, Wang CY, Kawazoe Y (2004) Phys Rev B 70:165413

    Article  Google Scholar 

  49. Hotop H, Lineberger WC (1975) J Phys Chem Ref Data 4:539–576

    Article  CAS  Google Scholar 

  50. Moore CE (1958) Atomic Energy Levels, National Bureau of Standards, Circ. No. 467, Vol. III. Washington, US

  51. Cheeseman MA, Eyier JR (1992) J Phys Chem 96:1082–1087

    Article  CAS  Google Scholar 

  52. Jachslath C, Rabin I, Schulze W (1992) Ber Bunsenges Phys Chem 96:1200–1204

    Article  Google Scholar 

  53. Zhao GF, Zeng Z (2006) J Chem Phys 125:014303

    Article  CAS  Google Scholar 

  54. Zanti G, Peeters D (2010) J Phys Chem A 114:10345–10356

    Article  CAS  Google Scholar 

  55. Wang JL, Wang GH, Chen XS, Lu W, Zhao JJ (2002) Phys Rev B 66:014419

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (No. 11347008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, P., Liu, GH. & Kuang, XY. Probing the structural and electronic properties of bimetallic chromium-gold clusters Cr m Au n (m + n ≤ 6): comparison with pure chromium and gold clusters. J Mol Model 20, 2385 (2014). https://doi.org/10.1007/s00894-014-2385-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2385-3

Keywords

Navigation