Skip to main content
Log in

Ab initio analysis on the interaction of CO2 binding to peracetated D-glucopyranose

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

CO2-philes can be utilized as additives, surfactants, and a potential phase-change physical solvent or absorbent for CO2, so the design and synthesis of CO2-philes typically non-fluorous compounds is important to develop more application areas of CO2. Researchers have recently reported that peracetated D-glucopyranose has high solubility in CO2. In order to study the interaction properties between sugar acetates with CO2, 1,2-di-O-acetyl-α-D-glucopyranose and 1,2-di-O-acetyl-β-D-glucopyranose were decided as substrates after initial chemical stimulations with peracetated D-glucopyranose, and the complex model was one CO2 molecule combined with one sugar substrate (1:1). Ab initio calculations of these two systems were accomplished including geometry optimizations with HF/3-21G, B3LYP/6-31+G**, and single point energies calibration with MP2/aug-cc-pVDZ. The results indicated that hydrogen atoms can interact with CO2 by C-H··O hydrogen bond, but the dominant ones are the interactions of oxygen atoms in substrates with a CO2 molecule. It was also found that the binding energies increased when more oxygen atoms of substrate interacted with CO2, but were not affected by their chemical environment. The interaction of sugar substrate with CO2 is distance related, and should be an electrostatic interaction not only Lewis acid-Lewis base and hydrogen bond interactions. Therefore, it can be expected that one CO2-phile could interact with more CO2 molecules if more acetate-like groups or oxygen atoms were introduced into the molecular structure based on all these results, and this can be a guideline for design CO2-philes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Eckert CA, Knutson BL, Debenedetti PG (1996) Supercritical fluids as solvents for chemical and materials processing. Nature 383:313–318. doi:10.1038/383313a0

    Article  CAS  Google Scholar 

  2. Wells SL, DeSimone JM (2001) CO2 technology platform: an important tool for environmental problem solving. Angew Chem Int Ed 40:518–527. doi:10.1002/1521-3773(20010202)40

    Article  CAS  Google Scholar 

  3. Mesiano AJ, Beckman EJ, Russell AJ (1999) Supercritical biocatalysis. Chem Rev 99:623–634. doi:10.1021/cr970040u

    Article  CAS  Google Scholar 

  4. DeSimone JM, Guan Z, Elsbernd CS (1992) Synthesis of fluoropolymers in supercritical carbon dioxide. Science 257:945–947, ISSN:1005-281X

    Article  CAS  Google Scholar 

  5. Johnston KP, Harrison KL, Clarke MJ, Howdle SM, Heitz MP, Bright FV, Carlier C, Randolph TW (1996) Water-in-carbon dioxide microemulsions: an environment for hydrophiles including proteins. Science 271:624–626. doi:10.1126/science.271.5249.624

    Article  CAS  Google Scholar 

  6. Sarbu T, Styranec T, Beckman EJ (2000) Non-fluorous polymers with very high solubility in supercritical carbon dioxide down to low pressures. Nature 405:165–168. doi:10.1038/35012040

    Article  CAS  Google Scholar 

  7. Woods HM, Silva MMCG, Nouvel C, Shakesheff KM, Howdle SM (2004) Materials processing in supercritical carbon dioxide: surfactants, polymers and biomaterials. J Mater Chem 14:1663–1678. doi:10.1039/B315262F

    Article  CAS  Google Scholar 

  8. Cummings S, Trickett K, Enick R, Eastoe J (2011) CO2: a wild solvent, tamed. Phys Chem Chem Phys 13:1276–1289. doi:10.1039/c003856c

    Article  CAS  Google Scholar 

  9. Beckman EJ (2004) A challenge for green chemistry: designing molecules that readily dissolve in carbon dioxide. Chem Commun 1885–1888. doi: 10.1039/b404406c

  10. Laintz KE, Wai CM, Yonker CR, Smith RD (1991) Solubility of fluorinated metal diethyldithiocarbamates in supercritical carbon dioxide. J Supercrit Fluids 4(3):194–198. doi:10.1016/0896-8446(91)90008-T

    Article  CAS  Google Scholar 

  11. DeSimone JM, Guan Z, Elsbernd CS (1992) Synthesis of fluoropolymers in supercritical carbon dioxide. Science 257:945–947. doi:10.1126/science.257.5072.945

    Article  CAS  Google Scholar 

  12. Kondo Y, Yoshino N (2005) Hybrid fluorocarbon/hydrocarbon surfactants. Curr Opin Colloid Interface Sci 10:88–93. doi:10.1016/j.cocis.2005.06.003

    Article  CAS  Google Scholar 

  13. Yang Z, Yang HJ, Tian J, Guo CY, Kim H (2011) High solubility and partial molar volume of 2,2′-Oxybis(N, N-bis (2-methoxyethyl)acetamide) in supercritical carbon dioxide. J Chem Eng Data 56:1191–1196. doi:10.1021/je101104m

    Article  CAS  Google Scholar 

  14. Kilic S, Wang Y, Johnson JK, Beckman EJ, Enick RM (2009) Influence of tert-amine groups on the solubility of polymers in CO2. Polymer 50:2436–2444. doi:10.1016/j.polymer.2009.03.012

    Article  CAS  Google Scholar 

  15. Azofra LM, Altarsha M, Ruiz-Lo’pez MF, Ingrosso F (2013) A theoretical investigation of the CO2-philicity of amides and carbamides. Theor Chem Acc 132:1326–1334. doi:10.1007/s00214-012-1326-4

    Article  Google Scholar 

  16. Potluri VK, Xu J, Enick R, Beckman E, Hamilton AD (2002) Peracetylated sugar derivatives show high solubility in liquid and supercritical carbon dioxide. Org Lett 4:2333. doi:10.1021/ol026007y

    Article  CAS  Google Scholar 

  17. Shen Z, McHugh MA, Xu J, Belardi J, Kilic S, Mesiano A, Bane S, Karnikas C, Beckman EJ, Enick RM (2003) CO2-solubility of oligomers and polymers that contain the carbonyl group. Polymer 44:1491–1498. doi:10.1016/S0032-3861(03)00020-X

    Article  CAS  Google Scholar 

  18. Raveendran P, Wallen SL (2002) Sugar acetates as novel, renewable CO2-philes. J Am Chem Soc 124:7274–7275. doi:10.1021/ja025508b

    Article  CAS  Google Scholar 

  19. Kirby CF, McHugh MA (1999) Phase behavior of polymers in supercritical fluid solvents. Chem Rev 99:565–602. doi:10.1021/CR970046J

    Article  CAS  Google Scholar 

  20. Sarbu T, Styranec TJ, Beckman EJ (2000) Design and synthesis of low cost, sustainable CO2-philes. Ind Eng Chem Res 39:4678–4683. doi:10.1021/ie0003077

    Article  CAS  Google Scholar 

  21. Drohmann C, Beckman EJ (2002) Phase behavior of polymers containing ether groups in carbon dioxide. J Supercrit Fluids 22:103–110. doi:10.1016/S0896-8446(01)00111-5

    Article  CAS  Google Scholar 

  22. Haines AH, Steytler DC, Rivett C (2008) Solubility dependence of peracylated D-glucopyranoses in supercritical carbon dioxide on the structure of their acyl moieties. J Supercrit Fluids 44:21–24. doi:10.1016/j.supflu.2007.08.007

    Article  CAS  Google Scholar 

  23. Tapriyal D, Wang Y, Enick RM, Johnson JK, Crosthwaitec J, Thies MC, Paik IH, Hamilton AD (2008) Poly(vinyl acetate), poly((1-O-(vinyloxy) ethyl-2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside) and amorphous poly(lactic acid) are the most CO2-soluble oxygenated hydrocarbon-based polymers. J Supercrit Fluids 46:252–257. doi:10.1016/j.supflu.2008.05.00

    Article  CAS  Google Scholar 

  24. Ma SL, Wu YT, Hurrey ML, Wallen SL, Grant CS (2010) Sugar acetates as CO2-philes: molecular interactions and structure aspects from absorption measurement using quartz crystal microbalance. J Phys Chem B 114:3809–3817. doi:10.1021/jp9122634

    Article  CAS  Google Scholar 

  25. Potluri VK, Hamilton AD, Karanikas CF, Bane SE, Xu J, Beckman EJ, Enick RM (2003) The high CO2-solubility of per-acetylated α-, β-, and γ-cyclodextrin. Fluid Phase Equilib 211:211–217. doi:10.1016/S0378-3812(03)00206-1

    Article  CAS  Google Scholar 

  26. Dilek C, Manke CW, Gulari E (2006) Phase behavior of β-D galactose pentaacetate-carbon dioxide binary system. Fluid Phase Equilib 239:172–177. doi:10.1016/j.fluid.2005.11.013

    Article  CAS  Google Scholar 

  27. Kazarian SG, Vincent MF, Bright FV, Liotta CL, Eckert CA (1996) Specific intermolecular interaction of carbon dioxide with polymers. J Am Chem Soc 118:1729–1736. doi:10.1021/JA950416Q

    Article  CAS  Google Scholar 

  28. Meredith JC, Johnston KP, Seminario JM, Kazarian SG, Eckert CA (1996) Quantitative equilibrium constants between CO2 and lewis bases from FTIR spectroscopy. J Phys Chem 100:10837–10848. doi:10.1021/jp953161b

    Article  Google Scholar 

  29. Raveendran P, Wallen SL (2002) Cooperative C-H·O Hydrogen Bonding in CO2-Lewis base complexes: implications for solvation in supercritical CO2. J Am Chem Soc 124:12590–12599. doi:10.1021/ja0174635

    Article  Google Scholar 

  30. Altarsha M, Ingrosso F, Ruiz-López MF (2012) Cavity closure dynamics of peracetylated β-Cyclodextrins in supercritical carbon dioxide. J Phys Chem B 116:3982–3990. doi:10.1021/jp3001064

    Article  CAS  Google Scholar 

  31. Altarsha M, Ingrosso F, Ruiz-Lopez MF (2012) A new glimpse into the CO2-philicity of carbonyl compounds. ChemPhysChem 13:3397–3403. doi:10.1002/cphc.201200135

    Article  CAS  Google Scholar 

  32. Trung NT, Hung NP, Hue TT, Nguyen MT (2011) Existence of both blue-shifting hydrogen bond and Lewis acid–base interaction in the complexes of carbonyls and thiocarbonyls with carbon dioxide. Phys Chem Chem Phys 13:14033–14042. doi:10.1039/c1cp20533a

    Article  Google Scholar 

  33. Wang Y, Hong L, Tapriyal D, Kim IC, Paik IH, Crosthwaite JM, Hamilton AD, Thies MC, Beckman EJ, Enick RM, Johnson JK (2009) Design and evaluation of nonfluorous CO2-soluble oligomers and polymers. J Phys Chem B 113:14971–14980. doi:10.1021/jp9073812

    Article  CAS  Google Scholar 

  34. Morokuma K, Kitaura K (1980) Variational approach (SCF ab initio calculations) to the study of molecular interactions: the origin of molecular interactions. In: Ratajczak H, Orville-Thomas WJ (eds) Molecular interactions, vol 1. Wiley, New York, pp 21–87

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from Natural Science Foundation of China (No. 21106172), and the Natural Science Foundation for Youths of Shanxi (2013021008–7). This work was also supported by grants from the Chinese Academy of Sciences (grant 2013YC002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pang Xianyong or Qiao Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honghong, C., Congcong, Y., Xing, L. et al. Ab initio analysis on the interaction of CO2 binding to peracetated D-glucopyranose. J Mol Model 20, 2259 (2014). https://doi.org/10.1007/s00894-014-2259-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2259-8

Keywords

Navigation