Skip to main content
Log in

Charge distribution analysis in \( {\mathbf{Ag}}_{\mathbf{n}}^{\mathbf{m}+} \)clusters: molecular modeling and DFT calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Neutral and charged silver clusters Ag m +63 and Ag m +113 (m=0,…,20) are investigated by simulated annealing molecular dynamics simulations. With increasing charge to size ratio the clusters undergo deformation to better accommodate surface charges. The latter are heterogeneously distributed and reflect the interplay of overall electrostatic repulsion and different degrees of local under-coordination of surface atoms. By comparison with atomic charges from natural population analysis based on density-functional calculations we demonstrate the suitability of the embedded-atom force-field in combination with the charge equilibrium approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Milek T, Duchstein P, Seifert G, Zahn D (2010) ChemPhysChem 11(4):847

    Article  CAS  Google Scholar 

  2. Anwar J, Zahn D (2011) Angew Chem Int Ed 50(9):1996

    Article  CAS  Google Scholar 

  3. Baletto F, Mottet C, Ferrando R (2001) Phys Rev B 63(15):155408

    Article  CAS  Google Scholar 

  4. Baletto F, Ferrando R (2005) Rev Mod Phys 77(1):371

    Article  CAS  Google Scholar 

  5. Uppenbrink J, Wales DJ (1992) J Chem Phys 96(11):8520

    Article  CAS  Google Scholar 

  6. Daw MS, Baskes MI (1984) Phys Rev B 29(12):6443

    Article  CAS  Google Scholar 

  7. Rappe AK, Goddard WA (1991) J Phys Chem 95(8):3358

    Article  CAS  Google Scholar 

  8. Zhang M, Fournier R (2009) J Phys Chem A 113(13):3162

    Article  CAS  Google Scholar 

  9. Kawska A, Brickmann J, Kniep R, Hochrein O, Zahn D (2006) J Chem Phys 124(2):024513

    Article  CAS  Google Scholar 

  10. Silvert PY, Herrera-Urbina R, Duvauchelle N, Vijayakrishnan V, Elhsissen KT (1996) J Mater Chem 6(4):573

    Article  CAS  Google Scholar 

  11. Silvert PY, Herrera-Urbina R, Tekaia-Elhsissen K (1997) J Mater Chem 7(2):293

    Article  CAS  Google Scholar 

  12. Kan CX, Zhu JJ, Zhu XG (2008) J Phys D Appl Phys 41(15):155304

    Article  CAS  Google Scholar 

  13. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118(45):11225

    Article  CAS  Google Scholar 

  14. Heinz H, Vaia RA, Farmer BL, Naik RR (2008) J Phys Chem C 112(44):17281

    Article  CAS  Google Scholar 

  15. Foiles SM, Baskes MI, Daw MS (1986) Phys Rev B 33(12):7983

    Article  CAS  Google Scholar 

  16. Williams PL, Mishin Y, Hamilton JC (2006) Model Simul Mater Sci Eng 14(5):817

    Article  CAS  Google Scholar 

  17. Baskes MI (1992) Phys Rev B 46:2727

    Article  CAS  Google Scholar 

  18. Zhang M, Fournier R (2006) J Mol Struct THEOCHEM 762(1–3):49

    Article  CAS  Google Scholar 

  19. Streitz FH, Mintmire JW (1994) Phys Rev B 50:11996

    Article  CAS  Google Scholar 

  20. Zhou XW, Wadley HNG, Filhol JS, Neurock MN (2004) Phys Rev B 69:035402

    Article  CAS  Google Scholar 

  21. Louwen J, Vogt E (1998) J Mol Catal A Chem 134(1–3):63

    Article  CAS  Google Scholar 

  22. Plimpton S (1995) J Comput Phys 117(1):1

    Article  CAS  Google Scholar 

  23. Wolf D, Keblinski P, Phillpot SR, Eggebrecht J (1999) J Chem Phys 110(17):8254

    Article  CAS  Google Scholar 

  24. Fennell CJ, Gezelter JD (2006) J Chem Phys 124(23):234104

    Article  CAS  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  26. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7(18):3297

    Article  CAS  Google Scholar 

  27. Weigend F (2006) Phys Chem Chem Phys 8:1057

    Article  CAS  Google Scholar 

  28. Sierka M, Hogekamp A, Ahlrichs R (2003) J Chem Phys 118(20):9136

    Article  CAS  Google Scholar 

  29. Becke AD (1988) Phys Rev A 38(6):3098

    Article  CAS  Google Scholar 

  30. Perdew JP (1986) Phys Rev B 33(12):8822

    Article  Google Scholar 

  31. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

    Article  CAS  Google Scholar 

  32. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83(2):735

    Article  CAS  Google Scholar 

  33. Lechtken A, Neiss C, Stairs J, Schooss D (2008) J Chem Phys 129(15)

  34. TURBOMOLE V6.5 2013, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com

Download references

Acknowledgements

We thank Sebastian Gsänger for performing test calculations adopting additional density-functionals. Financial support by the Deutsche Forschungsgemeinschaft (DFG) within the Cluster of Excellence EXC 315 “Engineering of Advanced Materials” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Zahn.

Additional information

This paper belongs to a Topical Collection on the occasion of Prof. Tim Clark’s 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milek, T., Döpper, T., Neiss, C. et al. Charge distribution analysis in \( {\mathbf{Ag}}_{\mathbf{n}}^{\mathbf{m}+} \)clusters: molecular modeling and DFT calculations. J Mol Model 20, 2111 (2014). https://doi.org/10.1007/s00894-014-2111-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2111-1

Keywords

Navigation