Skip to main content
Log in

A theoretical study on 1,5-diazido-3-nitrazapentane (DANP) and 1,7-diazido-2,4,6-trinitrazaheptane (DATNH): molecular and crystal structures, thermodynamic and detonation properties, and pyrolysis mechanism

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

1,5-Diazido-3-nitrazapentane (DANP) and 1,7-diazido-2,4,6-trinitrazaheptane (DATNH) are two energetic plasticizers. To better understand them, a detailed theoretical investigation was carried out using density functional theory and molecular mechanics methods. The crystal structures, spectra, thermodynamic properties, heats of formation, detonation velocity, detonation pressure, specific impulse and thermal stability were estimated. Possible initiation steps of pyrolysis were discussed by considering the bond breaking of N–NO2, C–N3, and N–N2 (via hydrogen transfer) for both compounds and the cyclization of the adjacent nitro and azido groups for DATNH. Results show that the rupture of N–NO2 and N–N2 (via hydrogen transfer) may happen simultaneously as the initial step of pyrolysis. Both crystals have P-1 symmetry as was observed experimentally. DANP has higher stability than DATNH, while DATNH has better detonation performance than DANP. In addition, DANP has a lower while DATNH has a higher specific impulse than RDX, which shows their prospects as propellant components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  1. Provatas A (2000) Energetic polymers and plasticisers for explosive formulations—a review of recent advances. DSTO-TR-0966.

  2. Flanagan JE, Wilson ER, Frankel MB (1991) 1, 5-diazido-3-nitrazapentane and method of preparation thereof. US: 5013856

  3. Ji YP, Lan Y, Li PR, Wang W, Ding F, Liu YJ (2008) Synthesis and characterization of 1,5-diazido-3-nitrazapentane (DIANP). Chin J Explos Propell 31:44–46

    CAS  Google Scholar 

  4. Zhang ZZ, Wang BZ, Shi ZC, Ji YP, Liu Q, Zhu CH (2003) Synthesis and properties of 1,7-Diazido-2,4, 6-trinitro-2,4,6-triazoheptane. Chin J Explos Propell 26:3–5

    Google Scholar 

  5. Klapötke TM, Krumm B, Steemann FX (2009) Preparation, characterization, and sensitivity data of some azidomethyl nitramines. Propell Explos Pyrotech 34:13–23

    Article  Google Scholar 

  6. Wang JL, Ji YP, Gao FL, Guo W, Ren ST (2011) Experimental measurement of safety parameters of DIANP. Chin J Energ Mater 19:693–696

    Google Scholar 

  7. Oyumi Y, Rheingold A, Brill T (1987) Thermal decomposition of energetic materials. 19. Unusual condensed-phase and thermolysis properties of a mixed azidomethyl nitramine: 1,7-diazido-2,4,6-trinitro-2,4,6-triazaheptane. J Phys Chem 91:920–925

    Article  CAS  Google Scholar 

  8. Wang W, Ding F, Liang Y, Ji YP, Liu WX (2010) Preparation and characterization of DIANP certified reference material. Chin J Explos Propell 33:52–55

    Google Scholar 

  9. Brill T, Karpowicz R, Haller T, Rheingold A (1984) A structural and fourier-transform infrared-spectroscopic characterization of the thermal decomposition of 1-(azidomethyl)-3,5,7-trinitro-1,3,5,7-tetraazacyclooctane. J Phys Chem 88:4138–4143

    Article  CAS  Google Scholar 

  10. Dang ZM, Zhao FQ (2000) Thermal decomposition characteristics of low signature propellant containing 1,7-diazido-2,4,6-trinitrazaptane. Xi’an JiaoTong University XueBao 34:88–92

    CAS  Google Scholar 

  11. Quinto-Hernandez A, Wodtke AM, Bennett CJ, Kim YS, Kaiser RI (2010) On the interaction of methyl azide (CH3N3) ices with ionizing radiation: formation of methanimine (CH2NH), hydrogen cyanide (HCN), and hydrogen isocyanide (HNC). J Phys Chem A 115:250–264

    Article  Google Scholar 

  12. Chakraborty D, Muller RP, Dasgupta S, Goddard WA (2000) The mechanism for unimolecular decomposition of RDX (1,3,5-trinitro-1,3,5-triazine), an ab initio study. J Phys Chem A 104:2261–2272

    Article  CAS  Google Scholar 

  13. Li JS, Xiao HM, Gong XD, Dong HS (1999) Theoretical study on the mechanism, thermodynamics and kinetics of 2-azido-1,3,5-trinitrobenzene thermolysis. Explos Shock Waves 19:1–5

    Google Scholar 

  14. Frisch MJ, Trucks GW, Schlegel HB, Suzerain GE, Robb MA, Cheeseman JrJR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision B.05, Gaussian: Wallingford.

  15. Materials Studio 4.4 (2008) Accelrys, San Diego, CA

  16. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  17. Becke AD (1992) Density-functional thermochemistry. II. The effect of the Perdew–Wang generalized-gradient correlation correction. J Chem Phys 97:9173–9177

    Article  CAS  Google Scholar 

  18. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  19. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  20. Xu XJ, Xiao HM, Gong XD, Ju XH, Chen ZX (2005) Theoretical studies on the vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanisms for polynitroadamantanes. J Phys Chem A 109:11268–11274

    Article  CAS  Google Scholar 

  21. Gong XD, Xiao HM (2001) Studies on the molecular structures, vibrational spectra and thermodynamic properties of organic nitrates using density functional theory and ab initio methods. J Mol Struct THEOCHEM 572:213–221

    Article  CAS  Google Scholar 

  22. Qiu L, Xiao HM, Ju XH, Gong XD (2005) Theoretical study of the structures and properties of cyclic nitramines: tetranitrotetraazadecalin (TNAD) and its isomers. Int J Quantum Chem 105:48–56

    Article  CAS  Google Scholar 

  23. Mayo SL, Olafson BD, Goddard WA (1990) Dreiding: a generic force field for molecular simulations. J Phys Chem 94:8897–8909

    Article  CAS  Google Scholar 

  24. Hill TL (1960) An introduction to statistical thermodynamics. Courier Dover, New York

    Google Scholar 

  25. Scott AP, Radom L (1996) Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  26. Wong MW (1996) Vibrational frequency prediction using density functional theory. Chem Phys Letters 256:391–399

    Article  CAS  Google Scholar 

  27. Haynes WM, Lide DR, Bruno TJ (2012) CRC handbook of chemistry and physics. Taylor and Francis (CRC), Boca Raton

    Google Scholar 

  28. Atkins PW, Clugston MJ (1982) Principles of physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  29. Rice BM, Pai SV, Hare J (1999) Predicting heats of formation of energetic materials using quantum mechanical calculations. Combust Flame 118:445–458

    Article  CAS  Google Scholar 

  30. Politzer P, Ma Y, Lane P, Concha MC (2005) Computational prediction of standard gas, liquid, and solid-phase heats of formation and heats of vaporization and sublimation. Int J Quantum Chem 105:341–347

    Article  CAS  Google Scholar 

  31. Gong XD (2007) Potden v.2.0. Nanjing University of Science and Technology: Nanjing.

  32. Kamlet MJ, Jacobs SJ (1968) Chemistry of detonations. I. A simple method for calculating detonation properties of C-H-N-O explosives. J Chem Phys 48:23–35

    Article  CAS  Google Scholar 

  33. Politzer P, Murray JS (2011) Some perspectives on estimating detonation properties of C, H, N, O compounds. Central Eur J Energ Mater 8:209–220

    CAS  Google Scholar 

  34. Wang GX, Gong XD, Xiao HM (2009) Theoretical investigation on density, detonation properties, and pyrolysis mechanism of nitro derivatives of benzene and aminobenzenes. Int J Quantum Chem 109:1522–1530

    Article  CAS  Google Scholar 

  35. Zhang JY, Du HC, Wang F, Gong XD, Huang YS (2011) DFT studies on a high energy density cage compound 4-trinitroethyl-2, 6, 8, 10,12-pentanitrohezaazaisowurtzitane. J Phys Chem A 115:6617–6621

    Article  CAS  Google Scholar 

  36. Wang F, Du HC, Zhang JY, Gong XD (2011) Computational studies on the crystal structure, thermodynamic properties, detonation performance, and pyrolysis mechanism of 2,4,6,8-tetranitro-1,3,5,7-tetraazacubane as a novel high energy density material. J Phys Chem A 115:11788–11795

    Article  CAS  Google Scholar 

  37. Politzer P, Murray J, Grice M, Sjoberg P, Olah G, Squire D (1991) Chemistry of energetic materials. Academic, San Diego

    Google Scholar 

  38. Wang GX, Gong XD, Liu Y, Du HC, Xu XJ, Xiao HM (2011) Looking for high energy density compounds applicable for propellant among the derivatives of DPO with -N3, -ONO2, and -NNO2 groups. J Comput Chem 32:943–952

    Article  Google Scholar 

  39. Wang GX, Gong XD, Du HC, Liu Y, Xiao HM (2011) Theoretical prediction of properties of aliphatic polynitrates. J Phys Chem A 115:795–804

    Article  CAS  Google Scholar 

  40. Kamlet M, Adolph H (1979) The relationship of impact sensitivity with structure of organic high explosives. II. Polynitroaromatic explosives. Propell Explos Pyrotech 4:30–34

    Article  CAS  Google Scholar 

  41. Xu XJ, Zhu WH, Xiao HM (2008) Molecular packing prediction and periodic calculations on three polynitroadamantanes as potential high energy density compounds. Chin J Chem 26:602–606

    Article  Google Scholar 

  42. Ghule V, Jadhav P, Patil R, Radhakrishnan S, Soman T (2009) Quantum-chemical studies on hexaazaisowurtzitanes. J Phys Chem A 114:498–503

    Article  Google Scholar 

  43. Li YF, Fan XW, Wang ZY, Ju XH (2009) A density functional study of substituted pyrazole derivatives. J Mol Struct: THEOCHEM 896:96–102

    Article  CAS  Google Scholar 

  44. Ju XH, Wang ZY, Yan XF, Xiao HM (2007) Density functional theory studies on dioxygen difluoride and other fluorine/oxygen binary compounds: availability and shortcoming. J Mol Struct: THEOCHEM 804:95–100

    Article  CAS  Google Scholar 

  45. Harris NJ, Lammertsma K (1997) Ab initio density functional computations of conformations and bond dissociation energies for hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine. J Am Chem Soc 119:6583–6589

    Article  CAS  Google Scholar 

  46. Xiao HM, Xu XJ, Qiu L (2008) Theoretical design of high energy density materials. Science, Beijing

    Google Scholar 

  47. Flanagan JE, Grant LE, Thompson WW, Woolery D (1985) The stable pyrolysis products of the monomers. Air Force Rocket Propulsion Laboratory, Junction , CA

    Google Scholar 

  48. Talawar M, Sivabalan R, Mukundan T, Muthurajan H, Sikder A, Gandhe B, Rao AS (2009) Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater 161:589–607

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank the Research Fund for the Doctoral Program of Higher Education of China (NO.20103219120014), Natural Science Foundation of Jiangsu Province (NO. BK20130755), and NUST “Excellent Plan and Zijin Star” Research Foundation for their support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuedong Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Wang, F., Zhang, J. et al. A theoretical study on 1,5-diazido-3-nitrazapentane (DANP) and 1,7-diazido-2,4,6-trinitrazaheptane (DATNH): molecular and crystal structures, thermodynamic and detonation properties, and pyrolysis mechanism. J Mol Model 19, 5367–5376 (2013). https://doi.org/10.1007/s00894-013-2014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2014-6

Keywords

Navigation