Skip to main content

Advertisement

Log in

Proteasomal cleavage site prediction of protein antigen using BP neural network based on a new set of amino acid descriptor

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The accurate identification of cytotoxic T lymphocyte epitopes is becoming increasingly important in peptide vaccine design. The ubiquitin–proteasome system plays a key role in processing and presenting major histocompatibility complex class I restricted epitopes by degrading the antigenic protein. To enhance the specificity and efficiency of epitope prediction and identification, the recognition mode between the ubiquitin–proteasome complex and the protein antigen must be considered. Hence, a model that accurately predicts proteasomal cleavage must be established. This study proposes a new set of parameters to characterize the cleavage window and uses a backpropagation neural network algorithm to build a model that accurately predicts proteasomal cleavage. The accuracy of the prediction model, which depends on the window sizes of the cleavage, reaches 95.454 % for the N-terminus and 95.011 % for the C-terminus. The results show that the identification of proteasomal cleavage sites depends on the sequence next to it and that the prediction performance of the C-terminus is better than that of the N-terminus on average. Thus, models based on the properties of amino acids can be highly reliable and reflect the structural features of interactions between proteasomes and peptide sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Frahm N, Korber BT, Adams CM et al. (2004) Consistent cytotoxic-T-lymphocyte targeting of immuno-dominant regions in human immunodeficiency virus across multiple ethnicities. Virol 78(5):2187–2200

    Article  CAS  Google Scholar 

  2. Takedatsu H, Shichijo S, Katagiri K et al. (2004) Identification of Peptide Vaccine Candidates Sharing among HLA-A3(+), −A11(+), −A31(+), and −A33(+). J Cancer Patients Clin Cancer Res 10(3):1112–1120

    Article  CAS  Google Scholar 

  3. Wu YZ, Shi TD (1998) EBVD: a new approach to molecular design of vaccine. Immunologist 8(s):1487–1489

    Google Scholar 

  4. Shi TD, Wu Y (1998) Molecular design and immunological investigations on the therapeutic peptide vaccines against viral hepatitis B. Immunologist 8(s):330–334

    Google Scholar 

  5. Rosenberg SA, Yang JC, Schwartzentruber DJ et al. (1998) Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 4(3):321–327

    Article  CAS  Google Scholar 

  6. Ciechanover A (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79(1):13–21

    Article  CAS  Google Scholar 

  7. Kisselev AF, Tatos N et al. (1999) The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. J Biol Chem 274(6):3363–3371

    Article  CAS  Google Scholar 

  8. Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847

    Article  CAS  Google Scholar 

  9. Jentsch S, Schlenker S (1995) Selective protein degradation: a journey’s end within the proteasome. Cell 82(6):881–884

    Article  CAS  Google Scholar 

  10. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  Google Scholar 

  11. Groll M, Ditzel L, Lowe J et al. (1997) Structure of 20S proteasome from yeast at 2.4A resolution. Nature 386:463–471

    Article  CAS  Google Scholar 

  12. Uebel S, Tampe R (1999) Specificity of the proteasome and the TAP transporter. Current Opinion in Immunology. J Curr Opin Immunol 11(2):203–208

    Article  CAS  Google Scholar 

  13. Craiu A, Akopian T, Goldberg A, Rock KL (1997) Two distinct proteolytic processes in the generation of a major histocompatibility complex class I-presented peptide. Proc Natl Acad Sci 94:10850–10855

    Article  CAS  Google Scholar 

  14. Niedermann G, King G, Butz S et al. (1996) The proteolytic fragments generated by vertebrate proteasomes: structural relationships to major histocompatibility complex class I binding peptides. Proc Natl Acad Sci 93:8572–8577

    Article  CAS  Google Scholar 

  15. Doytchinova IA, Guan PP, Flower DR (2006) EpiJen: a server for multistep T cell epitope prediction. BMC Bioinforma 7:131–141

    Article  Google Scholar 

  16. Pierre D, Oliver K (2005) Integrated modeling of the major events in the MHC class I antigen processing pathway. Protein Sci 14:2132–2140

    Article  Google Scholar 

  17. Holzhutter HG, Frommel C, Kloetzel PM (1999) A theoretical approach towards the identification of cleavage-determining amino acid motifs of the 20S proteasome. J Mol Biol 286:1251–1265

    Article  CAS  Google Scholar 

  18. Kuttler C, Nussbaum AK, Dick TP et al. (2000) An algorithm for the prediction of proteasomal cleavages. J Mol Biol 298:417–429

    Article  CAS  Google Scholar 

  19. Nussbaum AK, Kuttler C, Hadeler KP et al. (2001) PAProC: a prediction algorithm for proteasomal cleavages available on the WWW. Immunogenetics 53:87–94

    Article  CAS  Google Scholar 

  20. Kesmir C, Nussbaum AK, Schild H et al. (2002) Prediction of proteasome cleavage motifs by neural networks. Protein Eng 15:287–296

    Article  CAS  Google Scholar 

  21. Altuvia Y, Margalit H (2000) Sequence signals for generation of antigenic peptides by the proteasome: implications for proteasomal cleavage mechanism. J Mol Biol 295:879–890

    Article  CAS  Google Scholar 

  22. Goldsack DE, Chalifoux RC (1973) Contribution of the free energy of mixing of hydrophobic side chains to the stability of the tertiary structure. J Theor Biol 39:645–651

    Article  CAS  Google Scholar 

  23. Cosic I (1994) Macromolecular bioactivity: is it resonant interaction between macromolecules?–Theory and applications. J IEEE Trans Biomed Eng 41:1101–1114

    Article  CAS  Google Scholar 

  24. Prabhakaran M (1990) The distribution of physical, chemical and conformational properties in signal and nascent peptides. J Biochem 269:691–696

    CAS  Google Scholar 

  25. Shihab K (2006) A backpropagation neural network for computer network security. J Comput Sci 2(9):710–715

    Article  Google Scholar 

  26. Abraham A (2005) Artificial neural networks. In: Sydenham PH, Thorn R (eds) Handbook of measuring system design. Wiley, New York, pp 901-908

  27. Marques AJ, Palanimurugan R, Matias AC et al. (2009) Catalytic mechanism and assembly of the proteasome. Chem Rev 109(4):1509–1536

    Article  CAS  Google Scholar 

  28. Groll M, Larionov OV, Huber R et al. (2006) Inhibitor-binding mode of homobelactosin C to proteasomes: new insights into class I MHC ligand generation. Proc Natl Acad Sci USA 103(12):4576–4579

    Article  CAS  Google Scholar 

  29. Crooks GE, Hon G, Chandonia JM et al. (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190

    Article  CAS  Google Scholar 

  30. Saxova P, Buus S, Brunak S, Kesmir C (2003) Predicting proteasomal cleavage sites: a comparison of available methods. Int Immunol 15(7):781–787

    Article  CAS  Google Scholar 

  31. Bhasin M, Raghava GP (2005) Pcleavage: an SVM based method for prediction of constitutive proteasome and immunoproteasome cleavage sites in antigenic sequences. Nucleic Acids Res 33(Web Server issue):W202–W207

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Basic Research Program of China (No. 2012CB11460), National Natural Science Foundation of China (No. 81171508, 31170747) and Natural Science Foundation Project of CQ CSTC (No. cstc2013jjb10004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Lin.

Electronic supplementary material

The supplementary lists the epitope, peso-epitope and their protein.

ESM 1

(XLS 207 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Lin, Y., Shu, M. et al. Proteasomal cleavage site prediction of protein antigen using BP neural network based on a new set of amino acid descriptor. J Mol Model 19, 3045–3052 (2013). https://doi.org/10.1007/s00894-013-1827-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1827-7

Keywords

Navigation