Skip to main content
Log in

Global and local chemical reactivities of mutagen X and simple derivatives

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Registered by the World Health Organization (WHO), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) is one of the strongest bacterial mutagens ever tested, as highlighted by the Ames Salmonella typhimurium TA100 assay. We provide new insights concerning this mutagenic activity on the basis of global and local theoretically defined electrophilicity indices. Our results further support the idea that mutagenicity of MX and its analogues is related more closely to one-electron transfer processes from the electron-rich biological environment than to adduct formation processes. We also stress that, although the Z-open tautomers are intrinsically more electrophilic than furanone ring analogues, the observed mutagenic activity is significantly correlated only to the electrophilicity response of the ring forms. In that context, we also emphasize that it is electrophilicity at the C α in the αβ unsaturated carbonyl moiety that exhibits a strong correlation with the observed mutagenic activity.

3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) and its analogues 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen G, White P (2004) The mutagenic hazards of aquatic sediments: a review. Mutat Res 567:151–225

    Article  CAS  Google Scholar 

  2. Richardson S, Plewa M, Wagner E, Schoeny R, DeMarini DM (2007) Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat Res 636:178–242

    Article  CAS  Google Scholar 

  3. Ishiguro Y, Santodonato J, Neal M (1998) Mutagenic potency of chlorofuranones and related compounds in salmonella. Environ Mol Mutagen 11:225–234

    Article  Google Scholar 

  4. Maron DM, Ames BN (1983) Revised methods for the salmonella mutagenicity test. Mutat Res 113:173–215

    Article  CAS  Google Scholar 

  5. Fawell J, Mascarenhas R (2004) MX in Drinking-water. Background document for development of WHO Guidelines for Drinking-Water Quality, WHO, Geneva

  6. World Health Organization (Ed) (2011) Guidelines for Drinking-Water Quality, WHO, Geneva

  7. Benigni R, Cotta-Ramusino M, Andreoli C, Giuliani A (1992) Electrophilicity as measured by ke: molecular determinants, relationship with other physicalchemical and quantum mechanical parameters, and ability to predict rodent carcinogenicity. Carcinogenesis 13:547–553

    Article  CAS  Google Scholar 

  8. Benigni R, Passerini RA (2003) Structure-activity relationships for the mutagenicity and carcinogenicity of simple and unsaturated aldehydes. Environ Mol Mutagen 42:136–143

    Article  CAS  Google Scholar 

  9. Bakale G, McCreary R (1987) A physico-chemical screening test for chemical carcinogens: the ketest. Carcinogenesis 8:253–264

    Article  CAS  Google Scholar 

  10. Cho SJ (2003) Computational study of mutagen X. Bull Korean Chem Soc 24:731

    Article  CAS  Google Scholar 

  11. Popelier PLA, Smith PJ, Chaudry UA (2004) Quantitative structure-activity relationships of mutagenic activity from quantum topological descriptors: triazenes and halogenated hydroxyfuranones (mutagen-X) derivatives. J Comput Aid Mol Des 18:709–718

    Article  CAS  Google Scholar 

  12. Tuppurainen K (1999) Frontier orbital energies, hydrophobicity and steric factors as physical QSAR descriptors of molecular mutagenicity. A review with a case study: MX compounds. Chemosphere 38:3015–3030

    Article  CAS  Google Scholar 

  13. Tuppurainen K (1997) A plausible mechanism for the mutagenic activity (Salmonella typhimurium TA100) of mx compounds: a formation of cg-cg + −cg radical cation by one-electron reduction. SAR QSAR Environ Res 7:281–286

    Article  CAS  Google Scholar 

  14. Tuppurainen K, Lotjonen S (1993) On the mutagenicity of MX compounds. Mutat Res 287:235–241

    Article  CAS  Google Scholar 

  15. Tuppurainen K (1994) QSAR approach to molecular mutagenicity: a survey and a case study: MX compounds. J Mol Struc-THEOCHEM 112:49–56

    Article  CAS  Google Scholar 

  16. Tuppurainen K (1992) On the electronic structure of MX compounds. J Mol Struc-THEOCHEM 95:299–306

    Article  CAS  Google Scholar 

  17. LaLonde R, Leo H, Perakyla H, Dence CW, Farrell R (1992) Associations of the bacterial mutagenicity of halogenated 2(5h)-furanones with their mndopm3 computed properties and mode of reactivity with sodium borohydride. Chem Res Toxicol 5:392–400

    Article  CAS  Google Scholar 

  18. Cho S (2005) Hologram quantitative structure activity relationship hqsar study of mutagen X. Bull Kor Chem Soc 26:85–90

    Article  CAS  Google Scholar 

  19. Meier JR, Knohl RB, Coleman WE, Ringhand HP, Munch J, Kaylor WH, Streicher RP, Koper FC (1987) Studies on the potent bacterial mutagen, 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5h)-furanone: aqueous stability, xad recovery and analytical determination in drinking water and in chlorinated humic acid solutions. Mutat Res 184:363–373

    Google Scholar 

  20. Herrera B, Toro-Labbe A (2004) The role of the reaction force to characterize local specific interactions that activate the intramolecular proton transfers in DNA basis. J Chem Phys 121:7096–7102

    Article  CAS  Google Scholar 

  21. Rincon E, Toro-Labbe A (2007) Reaction force and electron localization function analysis of the metal chelation process in Mg(II) thymine complex. Chem Phys Lett 438:93–98

    Article  CAS  Google Scholar 

  22. Rincon E, Jaque P, Toro-Labbe A (2006) Reaction force analysis of the effect of Mg(II) on the 1,3 intramolecular hydrogen transfer in thymine. J Phys Chem A 110:9478–9485

    Article  CAS  Google Scholar 

  23. Rincon E, Bravo C, Quijano J, Velasquez N (2013) Mutagenicity and genotoxicity of water treated for human consumption induced by chlorination byproducts. J Environ Health 75:28–37

    Google Scholar 

  24. Parr RG, Yang W (1995) Density-functional theory of the electronic structure of molecules. Annu Rev Phys Chem 46:701–728

    Article  CAS  Google Scholar 

  25. Parr RG, Von Szentpaly L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  26. Klopman G, Zhang Z, Woodgate SD, Rosenkranz HS (1988) Ames Mutagenicity and concentration of the strong mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5h)-furanone and of its geometric isomer E-2- chloro-3-(dichloromethyl)-4-oxo-butenoic acid in chlorine-treated tap waters. Mutat Res 206:177–182

    Article  Google Scholar 

  27. Chattaraj P, Sarkar U, Roy D (2006) Electrophilicity index. Chem Rev 106:2065–2091

    Article  CAS  Google Scholar 

  28. Roy D, Parthasarathi R, Padmanabhan J, Sarkar U, Subramanian V, Chattaraj PK (2006) A careful scrutiny of the philicity concept. J Chem Phys A 110:1084–1093

    Article  CAS  Google Scholar 

  29. Parr R, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press

  30. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874

    Article  CAS  Google Scholar 

  31. Chamorro E, Perez P, De Proft F, Geerlings P (2006) Philicity indices within the spin-polarized density-functional theory framework. J Chem Phys 124:044105

    Article  CAS  Google Scholar 

  32. Ayers P, Parr R (2000) Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J Am Chem Soc 122:2010–2018

    Article  CAS  Google Scholar 

  33. Vijayaraj R, Subramanian V, Chattaraj P (2009) Comparison of global reactivity descriptors calculated using various density functionals: a QSAR perspective. J Chem Theory and Comput 5:2744–2753

    Article  CAS  Google Scholar 

  34. Chattaraj PK, Roy DR, Giri S, Mukherjee S, Subramanian V, Parthasarathi R, Bultinck P, Van Damme S (2007) An atom counting and electrophilicity based QSTR approach. J Chem Sci 119:475–488

    Article  CAS  Google Scholar 

  35. Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2006) Theoretical study on the complete series of chloroanilines. J Phys Chem A 110:9900–9907

    Article  CAS  Google Scholar 

  36. Roy D, Sarkar U, Chattaraj PK, Mitra A, Padmanabhan J, Parthasarathi R, Subramanian V, Van Damme S, Bultinck P (2006) Analyzing toxicity through electrophilicity. Mol Divers 10:119–131

    Article  CAS  Google Scholar 

  37. Perez P, Chamorro E, Ayers PW (2008) Universal mathematical identities in density functional theory: results from three different spin-resolved representation. J Chem Phys 128:204108

    Article  CAS  Google Scholar 

  38. Maynard AT, Huang M, Rice WG, Covell DG (1998) Reactivity of the hiv-1 nucleocapsid protein p7 zinc nger domains from the perspective of density functional theory. Proc Natl Acad Sci USA 95:11578–11583

    Article  CAS  Google Scholar 

  39. Janak JF (1978) Proof that \( \tfrac{{\delta E}}{{\delta {n_i}}}={\epsilon_i} \) in density functional theory. Phys Rev B 18:7165–7168

    Article  CAS  Google Scholar 

  40. Koopmans T (1934) Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica 1:104–113

    Article  Google Scholar 

  41. Contreras R, Fuentealba P, Galvan M, Perez P (1999) A direct evaluation of regional Fukui functions in molecules. Chem Phys Lett 304:405–413

    Article  CAS  Google Scholar 

  42. Fuentealba P, Perez P, Contreras R (2000) On the condensed Fukui function. J Chem Phys 113:2544–2551

    Article  CAS  Google Scholar 

  43. Chamorro E, Perez P (2005) Condensed-to-atoms electronic Fukui functions within the framework of spin-polarized density-functional theory. J Chem Phys 123:114107

    Article  Google Scholar 

  44. Yang W, Mortier WJ (1986) The use of global and local molecular-parameters for the analysis of the Gas-phase basicity of amines. J Am Chem Soc 108:5708–5711

    Article  CAS  Google Scholar 

  45. Bulat FA, Chamorro E, Chattaraj P, Fuentealba P, Toro-Labbe A (2004) Condensation of frontier molecular orbital Fukui functions. J Phys Chem A 108:342–349

    Article  CAS  Google Scholar 

  46. Tiznado W, Chamorro E, Contreras R, Fuentealba P (2005) Comparison among four different ways to condense the Fukui function. J Phys Chem A 109:3220–3224

    Article  CAS  Google Scholar 

  47. Frisch M, Trucks G, Schlegel H B, Scuseria G E, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian H, Izmaylov A, Bloino J, Zheng G, Sonnenberg J, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, Peralta J, Ogliaro F, Bearpark M, Heyd J, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar S, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09 revision a.1. Gaussian Inc, Wallingford CT

  48. Meneses L, Fuentealba P, Contreras R (2006) On the variations of electronic chemical potential and chemical hardness induced by solvent effects. Chem Phys Lett 433:54–57

    Article  CAS  Google Scholar 

  49. Perez P, Toro-Labbe A, Contreras R (2001) Solvent effects on electrophilicity. J Am Chem Soc 123:5527–5531

    Article  CAS  Google Scholar 

  50. Chamorro E, Chattaraj P, Fuentealba P (2003) Variation of the electrophilicity index along the reaction path. J Phys Chem A 107:7068–7072

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by Fondo de Desarrollo de la Ciencia y la Tecnologia, FONDECYT, Chile through Projects 11100412 (ER) and 1100277 (EC). The authors are also indebted to Universidad Austral de Chile and Universidad Andres Bello by the continuous support provided through the S-2010-25, UNAB-DI 57-11R and the Centro Interdisciplinario de Modelamiento Fisiquimico CIMFQ-UNAB, grant DI-219-12N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Rincon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1874 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rincon, E., Zuloaga, F. & Chamorro, E. Global and local chemical reactivities of mutagen X and simple derivatives. J Mol Model 19, 2573–2582 (2013). https://doi.org/10.1007/s00894-013-1799-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1799-7

Keywords

Navigation