Skip to main content
Log in

A comparative study on carbon, boron-nitride, boron-phosphide and silicon-carbide nanotubes based on surface electrostatic potentials and average local ionization energies

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A density functional theory study was carried out to predict the electrostatic potentials as well as average local ionization energies on both the outer and the inner surfaces of carbon, boron-nitride (BN), boron-phosphide (BP) and silicon-carbide (SiC) single-walled nanotubes. For each nanotube, the effect of tube radius on the surface potentials and calculated average local ionization energies was investigated. It is found that SiC and BN nanotubes have much stronger and more variable surface potentials than do carbon and BP nanotubes. For the SiC, BN and BP nanotubes, there are characteristic patterns of positive and negative sites on the outer lateral surfaces. On the other hand, a general feature of all of the systems studied is that stronger potentials are associated with regions of higher curvature. According to the evaluated surface electrostatic potentials, it is concluded that, for the narrowest tubes, the water solubility of BN tubes is slightly greater than that of SiC followed by carbon and BP nanotubes.

Computed surface electrostatic potential (a) and average ionization potential energy (b) of the (6,0) Si24C24H12 nanotube. Color ranges for VS(r), in kcal mol−1: red >22.91, yellow 3.83–22.91, green −15.25–3.82, blue <−15.25. Color ranges for Ī(r), in eV: red >11.35, yellow 9.63–11.35, green 7.91–9.63, blue <7.91. Black circles Surface maxima, blue surface minima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Malek K, Sahimi M (2010) Molecular dynamics simulations of adsorption and diffusion of gases in silicon-carbide nanotubes. J Chem Phys 132:014310

    Article  Google Scholar 

  3. Teo BK (2003) Doing chemistry on low-dimensional silicon surfaces: silicon nanowires as platforms and templates. Coord Chem Rev 246:229–246

    Article  CAS  Google Scholar 

  4. Ahmed R, Fazal-e-Aleem, Hashemifar SJ, Akbarzadeh H (2008) First-principles study of the structural and electronic properties of III-phosphides. Physica B 403:1876–1881

    Article  CAS  Google Scholar 

  5. Guo CS, Fan WJ, Chen ZH, Zhang RQ (2006) First-principles study of single-walled armchair Cx(BN)y nanotubes. Solid State Commun 137:549–552

    Article  CAS  Google Scholar 

  6. Beheshtian J, Behzadi H, Esrafili MD, Shirvani BB, Hadipour NL (2010) A computational study of water adsorption on boron nitride nanotube. Strut Chem 21:903–908

    Article  CAS  Google Scholar 

  7. Hou S, Shen Z, Zhang J, Zhao X, Xue Z (2004) Ab initio calculations on the open end of single-walled BN nanotubes. Chem Phys Lett 393:179–183

    Article  CAS  Google Scholar 

  8. Zhang D, Zhang RQ (2003) Ab initio calculations on the open end of single-walled BN nanotubes. Chem Phys Lett 371:426–432

    Article  CAS  Google Scholar 

  9. Zhi C, Bando Y, Tang C, Golberg D (2010) Boron nitride nanotubes. Mater Sci Eng 70:92–111

    Article  Google Scholar 

  10. Akdim B, Pachter R, Duan X, Adams WW (2003) Comparative theoretical study of single-wall carbon and boron-nitride nanotubes. Phys Rev B 67:245404

    Article  Google Scholar 

  11. Schroten E, Goossens A, Schoonman J (1998) Photo- and electroreflectance of cubic boron phosphide. J Appl Phys 83:1660–1663

    Article  CAS  Google Scholar 

  12. Ferreira VA, Leite Alves HW (2008) Boron phosphide as the buffer-layer for the epitaxial III-nitride growth: a theoretical study. J Cryst Growth 310:3973–3978

    Article  CAS  Google Scholar 

  13. Mirzaei M (2011) Carbon doped boron phosphide nanotubes: a computational study. J Mol Model 17:89–96

    Article  CAS  Google Scholar 

  14. Menon M, Richter E, Andriotis AN (2004) Structure and stability of SiC nanotubes. Phys Rev B 69:115322

    Article  Google Scholar 

  15. Khan F, Broughton J (1991) Relaxation of icosahedral-cage silicon clusters via tight-binding molecular dynamics. Phys Rev B 43:11754

    Article  CAS  Google Scholar 

  16. Menon M, Subbaswamy K (1994) Structure of Si60. Cage versus network structures. Chem Phys Lett 219:219–222

    Article  CAS  Google Scholar 

  17. Wu A, Song Q, Yang L, Hao Q (2011) The stability and electronic structures of B or/and N doped SiC nanotubes: a first-principles study. Comput Theor Chem 977:92–96

    Article  CAS  Google Scholar 

  18. Gali G, Kang HS (2008) Strain energy and electronic structures of silicon carbide nanotubes: density functional calculations. Phys Rev B 78:165425

    Article  Google Scholar 

  19. Zhang SL (2001) Optimal helicity of single-walled carbon nanotube. Phys Lett A 285:207–211

    Article  CAS  Google Scholar 

  20. Zhao MW, Xia YY, Li F, Zhang RQ, Lee ST (2005) Strain energy and electronic structures of silicon carbide nanotubes: density functional calculations. Phys Rev B 71:085312

    Article  Google Scholar 

  21. Zhou Z, Zhao J, Chen Z, Gao X, Yan T, Wen B, Schleyer PR (2006) Comparative study of hydrogen adsorption on carbon and BN nanotubes. J Phys Chem B 110:13363–13369

    Article  CAS  Google Scholar 

  22. Gao GH, Kang HS (2008) First principles study of NO and NNO chemisorption on silicon carbide nanotubes and other nanotubes. J Chem Theory Comput 4:1690–1697

    Article  CAS  Google Scholar 

  23. Gao GH, Park SH, Kang HS (2009) A first principles study of NO2 chemisorption on silicon carbide nanotubes. Chem Phys 355:50–54

    Article  CAS  Google Scholar 

  24. Zhao JX, Ding YH (2009) Can silicon carbide nanotubes sense carbon dioxide? J Chem Theory Comput 5:1099–1105

    Article  CAS  Google Scholar 

  25. Cao FL, Xu XY, Ren W, Zao CY (2010) Theoretical study of O2 molecular adsorption and dissociation on silicon carbide nanotubes. J Phys Chem C 114:970–976

    Article  CAS  Google Scholar 

  26. Mpourmpakis G, Froudakis GE, Lithoxoos GP, Samios J (2006) SiC nanotubes: a novel material for hydrogen storage. Nano Lett 6:1581–1583

    Article  CAS  Google Scholar 

  27. Zhao JX, Ding YH (2008) Silicon carbide nanotubes functionalized by transition metal atoms: a density functional study. J Phys Chem C 112:2558–2564

    Article  CAS  Google Scholar 

  28. Li F, Xia YY, Zhao MW, Liu XD, Huang BD, Yang ZH, Ji YJ, Song C (2005) Density-functional theory calculations of XH3-decorated SiC nanotubes (X = {C, Si}): structures, energetics, and electronic structures. J Appl Phys 97:104311

    Article  Google Scholar 

  29. Wang X, Liew KM (2012) Density functional study of fluorinated single-walled silicon carbide nanotubes. J Phys Chem C 116:1702–1708

    Article  CAS  Google Scholar 

  30. Naray-Szabo G, Ferenczy GG (1995) Molecular electrostatics. Chem Rev 95:829–847

    Article  CAS  Google Scholar 

  31. Sauer J, Ugliengo P, Garrone E, Saunders VR (1994) Theoretical study of van der Waals complexes at surface sites in comparison with the experiment. Chem Rev 94:2095–2160

    Article  CAS  Google Scholar 

  32. Peralta-Inga Z, Lane P, Murray JS, Boyd S, Grice ME, O’Connor CJ, Politzer P (2003) Characterization of surface electrostatic potentials of some (5,5) and (n,1) carbon and boron/nitrogen model nanotubes. Nano Lett 3:21–28

    Article  CAS  Google Scholar 

  33. Politzer P, Lane P, Murray JS, Concha MC (2005) Comparative analysis of surface electrostatic potentials of carbon, boron/nitrogen and carbon/boron/nitrogen model nanotubes. J Mol Model 11:1–7

    Article  CAS  Google Scholar 

  34. Politzer P, Murray JS, Lane P, Concha MC, Jin P, Peralta-Inga Z (2005) An unusual feature of end-substituted model carbon (6,0) nanotubes. J Mol Model 11:258–264

    Article  CAS  Google Scholar 

  35. Politzer P, Murray JS, Bulat FA (2010) Average local ionization energy: a review. J Mol Model 16:1731–1742

    Article  CAS  Google Scholar 

  36. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  37. Politzer P, Murray JS, Concha MC (2002) The complementary roles of molecular surface electrostatic potentials and average local ionization energies with respect to electrophilic processes. Int J Quantum Chem 88:19–27

    Article  CAS  Google Scholar 

  38. Feynman RP (1939) Forces in molecules. Phys Rev 56:340–343

    Article  CAS  Google Scholar 

  39. Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New York

    Google Scholar 

  40. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  41. Esrafili MD, Behzadi H (2012) A DFT study on carbon-doping at different sites of (8, 0) boron nitride nanotube. Struct Chem. doi:10.1007/s11224-012-0110-3

  42. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  43. Politzer P, Murray JS, Peralta-Inga Z (2010) Molecular surface electrostatic potentials in relation to noncovalent interactions in biological systems. Int J Quantum Chem 85:676–684

    Article  Google Scholar 

  44. Brinck T, Murray JS, Politzer P (1992) Quantitative determination of the total local polarity (charge separation) in molecules. Mol Phys 76:609–617

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi D. Esrafili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esrafili, M.D., Behzadi, H. A comparative study on carbon, boron-nitride, boron-phosphide and silicon-carbide nanotubes based on surface electrostatic potentials and average local ionization energies. J Mol Model 19, 2375–2382 (2013). https://doi.org/10.1007/s00894-013-1787-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1787-y

Keywords

Navigation