Skip to main content
Log in

Dynamic motion of La atom inside the C74 (D 3h) cage: a relativistic DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The interaction between lanthanum atom (La) and C74 (D 3h) was investigated by all-electron relativistic density function theory (DFT). With the aid of the representative patch of C74 (D 3h), we studied the interaction between C74 (D 3h) and La and obtained the interaction potential. Optimized structures show that there are three equivalent stable isomers, with La located about 1.7 Å off center. There is one transition state between every two stable isomers. According to the minimum energy pathway, the possible movement trajectory of La atoms in the C74 (D 3h) cage was explored. The calculated energy barrier for La atoms moving from the stable isomer to the transition state is 18.4 kcal mol−1. In addition, the dynamic NMR spectra of La@C74 according to the trajectory was calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Heath JR, O’Brien SC, Zhang Q, Liu Y, Curl RF (1985) Lanthanum complexes of spheroidal carbon shells. J Am Chem Soc 107:7779–7780

    Article  CAS  Google Scholar 

  2. Chai Y, Guo T, Jin C, Haufler RE, Chibante LPF (1991) Fullerenes with metals inside. J Phys Chem 95:7564–7568

    Article  CAS  Google Scholar 

  3. Nikawa H, Kikuchi T, Wakahara T, Nakahodo T, Tsuchiya T (2005) Missing metallofullerene La@C74. J Am Chem Soc 127:9684–9685

    Article  CAS  Google Scholar 

  4. Xu J, Tsuchiya T, Hao C, Shi Z, Wakahara T (2006) Structure determination of a missing-caged metallofullerene Yb@C74 (II) and the dynamic motion of the encaged ytterbium ion. Chem Phys Lett 419:44–47

    Article  CAS  Google Scholar 

  5. Haufe O, Reich A, Möschel C, Jansen M (2001) Darstellung, Isolierung und Charakterisierung von Ba@C74.Z. Anorg Allg Chem 627:23–27

    Article  CAS  Google Scholar 

  6. Grupp A, Haufe M, Jansen M, Mehring M, Panthofer J (2002) Synthesis, isolation and characterisation of New alkaline earth endohedral fullerenes M@Cn (M = Ca, Sr; n = 74, 76). AIP Conference Proceedings 633:31–34

    Article  CAS  Google Scholar 

  7. Haufe O, Hecht M, Grupp A, Mehring M, Jansen M (2005) Isolation and spectroscopic characterization of New endohedral fullerenes in the size gap of C74 to C76. Z Anorg Allg Chem 631:126–130

    Article  CAS  Google Scholar 

  8. Kuran P, Krause M, Bartl A, Dunsch L (1998) Preparation, isolation and characterisation of Eu@C74: the first isolated europium endohedral fullerene. Chem Phys Lett 292:580–586

    Article  CAS  Google Scholar 

  9. Okazaki T, Lian Y, Gu ZN, Suenagac K, Shinohara H (2000) Isolation and spectroscopic characterization of Sm-containing metallofullerenes. Chem Phys Lett 320:435–440

    Article  CAS  Google Scholar 

  10. Okazaki T, Suenaga K, Lian Y, Gu Z, Shinohara H (2001) Intrafullerene electron transfers in Sm-containing metallofullerenes Sm@C2n (74 ≤ 2n ≤ 84). J Mol Graph Model 19:244–251

    Article  CAS  Google Scholar 

  11. Okazaki T, Suenaga K, Lian YF, Gu ZN, Shinohara H (2000) Direct EELS observation of the oxidation states of Sm atoms in Sm@C2n metallofullerenes (74 ≤2n ≤84). J Chem Phys 113:9593–9597

    Article  CAS  Google Scholar 

  12. Wan TSM, Zhang HW (1998) Production, isolation and electronic properties of missing fullerenes:Ca@C72 and Ca@C74. J Am Chem Soc 120:6806–6807

    Article  CAS  Google Scholar 

  13. Xu JX, Lu X, Zhou XH, He XR, Shi ZJ (2004) Synthesis, isolation and spectroscopic characterization of ytterbium-containing metallofullerenes. Chem Mater 16:2959–2964

    Article  CAS  Google Scholar 

  14. Miyake Y, Suzuki S, Kojima Y, Kikuchi K, Kobayashi K (1996) Motion of scandium ions in Sc2C84 observed by 45Sc solution NMR. J Phys Chem 100:9579–9581

    Article  CAS  Google Scholar 

  15. Nishibori E, Takata M, Sakata M, Tanaka H, Hasegawa M (2000) Giant motion of La atom inside C82 cage. Chem Phys Lett 330:497–502

    Article  CAS  Google Scholar 

  16. Umemoto H, Ohashi K, Inoue T, Fukui N, Sugai T (2010) Synthesis and UHV-STM observation of the T d-symmetric Lu metallofullerene: Lu2@C76(T d). Chem Commun 46:5653–5655

    Article  CAS  Google Scholar 

  17. Akasaka T, Nagase S, Kobayashi K, Wälchli M, Yamamoto K (1997) 13C and 139La NMR studies of La2@C80: first evidence for circular motion of metal atoms in endohedral dimetallofullerenes. Angew Chem Int Ed Engl 36:1643–1645

    Article  CAS  Google Scholar 

  18. Nishibori E, Takata M, Sakata M, Taninaka A, Shinohara H (2001) Pentagonal-dodecahedral La2 charge density in [80-Ih] fullerene: La2@C80. Angew Chem Int Ed 40:2998–2999

    Article  CAS  Google Scholar 

  19. Andreoni W, Curioni A (1996) Freedom and constraints of a metal atom encapsulated in fullerene cages. Phys Rev Lett 77:834–837

    Article  CAS  Google Scholar 

  20. Heine T, Vietze K, Seifert G (2004) 13C NMR fingerprint characterizes long time-scale structure of Sc3N@C80 endohedral fullerene. Magn Reson Chem 42:S199–S201

    Article  CAS  Google Scholar 

  21. Jin P, Hao C, Li SM, Mi WH, Sun ZC (2006) Theoretical study on the motion of a La atom inside a C82 cage. J Phys Chem A 111:167–169

    Google Scholar 

  22. Kodama T, Fujii R, Miyake Y, Suzuki S, Nishikawa H (2004) 13C NMR study of Ca@C74: the cage structure and the site-hopping motion of a Ca atom inside the cage. Chem Phys Lett 399:94–97

    Article  CAS  Google Scholar 

  23. Vietze K, Seifert G, Fowler PW (2000) Structure and dynamics of endohedral fullerenes. AIP Conf Proc 544:131–134

    Article  CAS  Google Scholar 

  24. Delley B (1990) An all–electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  25. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  26. Becke AD (1998) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  Google Scholar 

  27. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  28. Powell RE (1968) Relativistic quantum chemistry. J Chem Educ 45:558–563

    Article  CAS  Google Scholar 

  29. Pitzer K (1979) Relativistic effects on chemical properties. Acc Chem Res 12:271–276

    Article  CAS  Google Scholar 

  30. Pyykko P, Desclaux JP (1979) Relativity and the periodic system of elements. Acc Chem Res 12:276–281

    Article  CAS  Google Scholar 

  31. Pyykko P (1988) Relativistic effects in structural chemistry. Chem Rev 88:563–594

    Article  CAS  Google Scholar 

  32. Liu W (2010) Ideas of relativistic quantum chemistry. Mol Phys 108:1679–1706

    Article  CAS  Google Scholar 

  33. Fletcher R (1980) Practical methods of optimization, vol 1. Wiley, New York

    Google Scholar 

  34. te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, van Gisbergen SJA (2001) Chemistry with ADF. J Comput Chem 22:931–967

    Article  Google Scholar 

  35. Halgren TA, Lipscomb WN (1997) Chem Phys Lett 49:225–232

    Article  Google Scholar 

  36. Guerra CF, Snijders JG, te Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Acc: Theory, Comput, Model (Theoretica Chimica Acta) 99:391–403

    CAS  Google Scholar 

  37. Zhang JF, Hao C, Li SM, Mi WH, Jin P (2007) Which configuration is more stable for La2@C80, D3d or D2h? recomputation with ZORA methods within ADF. J Phys Chem C 111:7862–7867

    Article  CAS  Google Scholar 

  38. van Lenthe E, Baerends EJ, Snijders JG (1993) Relativistic regular two-component Hamiltonians. J Chem Phys 99:4597–4610

    Article  Google Scholar 

  39. van Lenthe E, Baerends EJ, Snijders JG (1994) Relativistic total energy using regular approximations. J Chem Phys 101:9783–9792

    Article  Google Scholar 

  40. van Lenthe E, Ehlers AE, Baerends EJ (1999) Geometry optimizations in the zero order regular approximation for relativistic effects. J Chem Phys 110:8943–8953

    Article  Google Scholar 

  41. Sun G, Kertesz M (2000) Theoretical 13C NMR spectra of IPR isomers of fullerenes C60, C70, C72, C74, C76, and C78 studied by density functional theory. J Phys Chem A104:7398–7403

    Article  Google Scholar 

  42. Avent AG, Dubois D, Penicaud A, Taylor R (1997) The minor isomers and IR spectrum of [84]fullerene. J Chem Soc Perkin Trans 2:1907–1910

    Google Scholar 

  43. Rappoport D, Furche F (2009) Structure of endohedral fullerene Eu@C74. Phys Chem Chem Phys 11:6353–6358

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Tian would like to thank National Natural Science Foundation of China (21001019) and the Fundamental Research Funds for the Central Universities (DUT12LK26). C.H. would like to thank the National Natural Science Foundation of China (Grant Nos. 21036006 and 21137001). The results were obtained on the ScGrid of Supercomputing Center, Computer Network Information Center of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ce Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, D., Ren, S. & Hao, C. Dynamic motion of La atom inside the C74 (D 3h) cage: a relativistic DFT study. J Mol Model 19, 1591–1596 (2013). https://doi.org/10.1007/s00894-012-1703-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1703-x

Keywords

Navigation