Skip to main content
Log in

Nitrous oxide adsorption on pristine and Si-doped AlN nanotubes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Using density functional theory, we studied the adsorption of an N2O molecule onto pristine and Si-doped AlN nanotubes in terms of energetic, geometric, and electronic properties. The N2O is weakly adsorbed onto the pristine tube, releasing energies in the range of −1.1 to −5.7 kcal mol-1. The electronic properties of the pristine tube are not influenced by the adsorption process. The N2O molecule is predicted to strongly interact with the Si-doped tube in such a way that its oxygen atom diffuses into the tube wall, releasing an N2 molecule. The energy of this reaction is calculated to be about −103.6 kcal mol-1, and the electronic properties of the Si-doped tube are slightly altered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Centi G, Galli A, Montanari B, Perathoner S, Vaccari A (1997) Catal Today 35:113–124

    Article  CAS  Google Scholar 

  2. Centi G, Dall’Olio L, Perathoner S (2000) J Catal 192:224–235

    Article  CAS  Google Scholar 

  3. Burch R, Daniells ST, Breen JP, Hu P (2004) J Catal 224:252–260

    Article  CAS  Google Scholar 

  4. Chen Y, Gao B, Zhao JX, Cai QH, Fu HG (2012) J Mol Model 18:2043–2054

    Article  CAS  Google Scholar 

  5. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  6. Politzer P, Lane P, Murray JS, Concha MC (2005) J Mol Model 11:1–7

    Article  CAS  Google Scholar 

  7. Dinadayalane TC, Kaczmarek A, Lukaszewicz J, Leszczynski J (2007) J Phys Chem C 111:7376–7383

    Article  CAS  Google Scholar 

  8. Dinadayalene TC, Murray JS, Concha MC, Politzer P, Leszczynski J (2010) J Chem Theory Comput 6:1351–1357

    Article  Google Scholar 

  9. Peralta-Inga Z, Boyd S, Murray JS, O’Connor CJ, Politzer P (2003) Struct Chem 14:431–443

    Article  CAS  Google Scholar 

  10. Rubio A, Corkill JL, Cohen ML (1994) Phys Rev B 49:5081–5084

    Article  CAS  Google Scholar 

  11. Cumings J, Zettl A (2000) Chem Phys Lett 316:211–216

    Article  CAS  Google Scholar 

  12. Zhang D, Zhang R (2003) Chem Phys Lett 371:426–432

    Article  CAS  Google Scholar 

  13. Tondare V, Balasubramanian C, Shende S, Joag D, Godbole V, Bhoraskar S, Bhadhade M (2002) Appl Phys Lett 80:4813–4815

    Article  CAS  Google Scholar 

  14. Balasubramanian C, Bellucci S, Castrucci P, Crescenzi M, Bhoraskar S (2004) Chem Phys Lett 383:188–191

    Article  CAS  Google Scholar 

  15. Yin B, Bando Y, Zhu Y, Li M, Tang C, Golberg D (2005) Adv Mater 17:213–217

    Article  CAS  Google Scholar 

  16. Fan Y (2011) Mater Lett 65:1900–1902

    Article  CAS  Google Scholar 

  17. Tabtimsai C, Keawwangchai S, Nunthaboot N, Ruangpornvisuti V, Wanno B (2012) J Mol Model 18:3941–3949

    Article  CAS  Google Scholar 

  18. Yim WL, Liu ZF (2004) Chem Phys Lett 398:297–303

    Article  CAS  Google Scholar 

  19. Grujicic M, Cao G, Gersten B (2003) Appl Surf Sci 206:167–177

    Article  CAS  Google Scholar 

  20. Schmidt M et al (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  21. Ahmadi A, Beheshtian J, Kamfiroozi M (2012) J Mol Model 18:1729–1734

    Article  CAS  Google Scholar 

  22. Moradi M, Peyghan A, Bagheri Z, Kamfiroozi M (2012) J Mol Model 18:3535–3540

    Article  CAS  Google Scholar 

  23. Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2012) J Mol Model 18:2653–2658

    Article  CAS  Google Scholar 

  24. Frey JT, Doren DJ (2005) TubeGen software, version 3.3. http://turin.nss.udel.edu/research/tubegenonline.html

  25. Tomić S, Montanari B, Harrison NM (2008) Phys E 40:2125–2127

    Article  Google Scholar 

  26. Ahmadi A, Beheshtian J, Hadipour NL (2011) Phys E 43:1717–1719

    Article  CAS  Google Scholar 

  27. Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2012) Struct Chem 23:653–657

    Article  CAS  Google Scholar 

  28. Jiao Y, Du A, Zhu Z, Rudolph V, Smith SC (2010) J Mater Chem 20:10426–10430

    Article  CAS  Google Scholar 

  29. Beheshtian J, Peyghan AA, Bagheri Z (2012) Phys E 44:1963–1968

    Article  CAS  Google Scholar 

  30. Ahmadi A, Hadipour NL, Kamfiroozi M, Bagheri Z (2012) Sens Actuators B Chem 161:1025–1029

    Article  CAS  Google Scholar 

  31. Beheshtian J, Baei MT, Peyghan AA, Bagheri Z (2012) J Mol Model 18:4745–4750

    Google Scholar 

  32. Baei MT, Peyghan AA, Bagheri Z (2012) Chin Chem Lett 23:965–968

    Article  CAS  Google Scholar 

  33. Beheshtian J, Baei MT, Bagheri Z, Peyghan AA (2012) Microelectron J 43:452–455

    Article  CAS  Google Scholar 

  34. Peng C, Schlegel HB (1993) Israel J Chem 33:449–454

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ahmadi Peyghan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beheshtian, J., Baei, M.T., Peyghan, A.A. et al. Nitrous oxide adsorption on pristine and Si-doped AlN nanotubes. J Mol Model 19, 943–949 (2013). https://doi.org/10.1007/s00894-012-1634-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1634-6

Keywords

Navigation