Skip to main content
Log in

Carbenic vs. ionic mechanistic pathway in reaction of cyclohexanone with bromoform

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The extensive computation study was done to elucidate the mechanism of formation dibromoepoxide from cyclohexanone and bromoform. In this reaction, the formation of dihaloepoxide 2 is postulated as a key step that determines the distribution and stereochemistry of products. Two mechanistic paths of reaction were investigated: the addition of dibromocarbene to carbonyl group of ketone, and the addition of tribromomethyl carbanion to the same (C=O) group. The mechanisms for the addition reactions of dibromocarbenes and tribromomethyl carbanions with cyclohexanone have been investigated using ab initio HF/6-311++G** and MP2/6-311+G* level of theory. Solvent effects on these reactions have been explored by calculations which included a continuum polarizable conductor model (CPCM) for the solvent (H2O). The calculations showed that both mechanisms are possible and are exothermic, but have markedly different activation energies.

Mechanistic pathways for the reaction of cyclohexanone with bromoform and PE map for ionic mechanism (path 2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barthel WF, Leon J, Hall SA (1954) J Org Chem 19:485–489

    Article  CAS  Google Scholar 

  2. Leon J, Barthel WF, Hall SA (1954) J Org Chem 19:490–492

    Article  CAS  Google Scholar 

  3. Reeve W, Fine LW (1964) J Org Chem 29:1148–1150

    Article  CAS  Google Scholar 

  4. Palaty J, Abbott FS (1995) J Med Chem 38:3398–3406

    Article  CAS  Google Scholar 

  5. Reeve W, Woods CW (1960) J Am Chem Soc 82:4062–4066

    Article  CAS  Google Scholar 

  6. Reeve W (1971) Synthesis 3:131–138

    Article  Google Scholar 

  7. Kuhl P, Mühlstädt M, Graefe J (1976) Synthesis 12:825–826

    Article  Google Scholar 

  8. Merz A (1974) Synthesis 10:724–725

    Article  Google Scholar 

  9. Corey EJ, Link JO (1992) J Am Chem Soc 114:1906–1908

    Article  CAS  Google Scholar 

  10. Gill HS, Landgrebe JA (1983) J Org Chem 48:1051–1055

    Article  CAS  Google Scholar 

  11. Peng L, Li QS, Fang WH, Fu CJ, Zhang J (2003) Chem Phys Lett 382:126–132

    Article  CAS  Google Scholar 

  12. Vitnik VD, Ivanović MD, Vitnik ŽJ, Đorđević JB, Žižak ŽS, Juranić ZD, Juranić IO (2009) Synt Comm 39(8):1457–1471

    Article  CAS  Google Scholar 

  13. Pliego JR Jr, De Almeida WB (1997) J Chem Phys 106:3582–3587

    Article  CAS  Google Scholar 

  14. Vitnik ŽJ, Kiricojević VD, Ivanović MD, Juranić IO (2006) Int J Quant Chem 106(6):1323–1329

    Article  CAS  Google Scholar 

  15. Hine J (1950) J Am Chem Soc 72:2438–2445

    Article  CAS  Google Scholar 

  16. Hine J, Dowell AM Jr (1954) J Am Chem Soc 76:2688–2692

    Article  CAS  Google Scholar 

  17. Curtiss LA, Raghavachari K, Pople JA (1993) J Chem Phys 98:1293–1298

    Article  CAS  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara AM, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian Inc, Wallingford

    Google Scholar 

  19. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  20. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by Ministry of Education and Science, Republic of Serbia, under Grant No. 172035, and by High-Performance Computing Infrastructure for South East Europe’s Research Communities European project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna D. Vitnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitnik, V.D., Vitnik, Ž.J. & Juranić, I.O. Carbenic vs. ionic mechanistic pathway in reaction of cyclohexanone with bromoform. J Mol Model 18, 4721–4728 (2012). https://doi.org/10.1007/s00894-012-1468-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1468-2

Keywords

Navigation