Skip to main content
Log in

Molecular modeling of two-photon absorption and third-order nonlinearities of polymethine dyes for all-optical switching

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Stimulated by a recent experimental report [Hales JM et al. (2010) Science 327:1485–1488], two-photon absorption and third-order optical nonlinearities of selenopyrylium- and bis(dioxaborine)-terminated polymethine dyes (called SE-7C and DOB-9C) used for all-optical switching were investigated theoretically with time-dependent DFT (TD-DFT) and response theory as well as visualized real-space analysis. The calculated results for the first hyperpolarizability and second hyperpolarizability demonstrated that the two molecules both have large third-order optical nonlinearities. Using real-space analysis, we were able to visually determine that in the one-photon absorption (OPA) process, the first singlet excited state of SE-7C and DOB-9C is an intramolecular charge transfer (ICT) excited state with strong absorption, while the second excited state of these dyes (also termed the “ICT state”) shows weak absorption. However, in the two-photon absorption (TPA) process, a larger TPA absorption cross-section was predicted for the second excited state. In this paper, we describe the properties of the S2 excited state, incorporating charge transfer and the transition moment, via real-space analysis, which was very important for understanding the TPA characteristics of the S2 state.

The chemical structures of selenopyrylium- and bis(dioxaborine)-terminated polymethine dyes ( called SE-7C and DOB-9C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1 a-b
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Göppert-Mayer M (1931) Über Elementarakte mit zwei Quantensprüngen. Ann Phys 401:273–294

    Article  Google Scholar 

  2. Parthenopoulos DA, Rentzepis PM (1989) Three-dimensional optical storage memory. Science 245:843–845

    Article  CAS  Google Scholar 

  3. Ehrlich JE, Wu XL, Lee YS, Hu ZY, Röckel H, Marder SR, Perry JW (1997) Two-photon absorption and broadband optical limiting with bis-donor stilbenes. Opt Lett 22:1843–1845

    Article  CAS  Google Scholar 

  4. Cumpston BH, Ananthavel SP, Barlow S, Dyer DL, Ehrlich JE, Erskine LL, Heikal AA, Kuebler SM, Lee YS, McCord Maughon D, Qin J, Röckel H, Rumi M, Wu XL, Marder SR, Perry JW (1999) Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398:51–54

    Article  CAS  Google Scholar 

  5. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  CAS  Google Scholar 

  6. Hales JM, Matichak J, Barlow S, Ohira S, Yesudas K, Brédas JL, Perry JW, Marder S (2010) Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit. Science 327:1485–1488

    Article  CAS  Google Scholar 

  7. Albota M, Beljonne D, Bredas JL, Ehrlich JE, Fu JY, Heikal AA, Hess SE, Kogej T, Levin MD, Marder SR, McCord-Maughon D, Perry JW, Rockel H, Rumi M, Subramaniam G, Webb WW, Wu XL, Xu C (1998) Design of organic molecules with large two-photon absorption cross sections. Science 281:1653–1656

    Article  CAS  Google Scholar 

  8. Zou L, Liu ZJ, Yan XB, Liu Y, Fu Y, Liu J, Huang ZL, Chen XG, Qin JG (2009) Star-shaped D-π-A molecules containing a 2,4,6-tri(thiophen-2-yl)-1,3,5-triazine unit: synthesis and two-photon absorption properties. Eur J Org Chem 32:5587–5593

    Google Scholar 

  9. Qin AJ, Lam JWY, Dong HC, Lu WX, Jim CKW, Dong YQ, Häubler M, Sung HHY, Williams ID, Wong GKL, Tang BZ (2007) Metal-free, regioselective diyne polycyclotrimerization: synthesis, photoluminescence, solvatochromism, and two-photon absorption of a triphenylamine-containing hyperbranched poly(aroylarylene). Macromolecules 40:4879–4886

    Google Scholar 

  10. Qin AJ, Jim CKW, Lu WX, Lam JWY, Häubler M, Dong YQ, Sung HHY, Williams ID, Wong GKL, Tang BZ (2007) Click polymerization: facile synthesis of functional poly(aroyltriazole)s by metal-free, regioselective 1,3-dipolar polycycloaddition. Macromolecules 40:2308–2317

    Google Scholar 

  11. Martin RL (2003) Natural transition orbitals. J Chem Phys 118:4775

    Article  CAS  Google Scholar 

  12. Fang YR, Li YZ, Xu HX, Sun MT (2010) Ascertaining p,p′-dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles. Langmuir 26:7737–7746

    Google Scholar 

  13. Krueger BP, Scholes GD, Fleming GR (1998) Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J Phys Chem B 102:5378–5386

    Google Scholar 

  14. Cho BR, Son HK, Lee SH, Song YS, Lee YK, Jeon SJ, Choi JH, Lee H, Cho M (2001) Two photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene derivatives. J Am Chem Soc 123:10039–10045

    Article  CAS  Google Scholar 

  15. Matichak JD, Hales JM, Ohira S, Barlow S, Jang SH, Jen AKY, Bredas JL, Perry JW, Marder SR (2010) Using end groups to tune the linear and nonlinear optical properties of bis(dioxaborine)-terminated polymethine dyes. Chem Phys Chem 11:130–138

    Article  CAS  Google Scholar 

  16. Wang XF, Zhang XR, Wu YS, Zhang JP, Ai XC, Wang Y, Sun MT (2007) Two-photon photophysical properties of tri-9-anthrylborane. Chem Phys Lett 436:280–286

    Article  CAS  Google Scholar 

  17. Li MY, Hao R, Fu LM, Su WJ, Zhao XH, Zhang JP, Ai XC, Sun MT, Wang Y (2007) Spectroscopic and theoretical studies on the photophysical properties of dichlorotriazine derivatives. Chem Phys Lett 444:297–303

    Article  CAS  Google Scholar 

  18. Amadei A, D’Abramo M, Nola AD, Arcadi A, Cerichellic G, Aschi M (2007) Theoretical study of intramolecular charge transfer in π-conjugated oligomers. Chem Phys Lett 434:194–199

    Article  CAS  Google Scholar 

  19. Haiss W, Zalinge HV, Bethell D, Ulstrup J, Schiffrina DJ, Nicholsa RJ (2006) Thermal gating of the single molecule conductance of alkanedithiols. Faraday Discuss 131:253–264

    Article  CAS  Google Scholar 

  20. Nguyen KA, Day PN, Pachter R (2008) Effects of conjugation in length and dimension on two-photon properties of fluorene-based chromophores. Theor Chem Acc 120:167–175

    Article  CAS  Google Scholar 

  21. Wang CK, Zhao K, Su Y, Luo Y, Ren Y, Zhao X (2003) Solvent effects on the electronic structure of a newly synthesized two-photon polymerization initiator. J Chem Phys 119:1208

    Article  CAS  Google Scholar 

  22. Sun MT, Kjellberg P, Beenken WJD, Pullerits T (2006) Comparison of the electronic structure of PPV and its derivative DIOXA-PPV. Chem Phys 327:474–484

    Article  CAS  Google Scholar 

  23. Beenken WJD, Pullerits T (2004) Spectroscopic units in conjugated polymers: a quantum chemically founded concept? J Phys Chem B 108:6164–6169

    Article  CAS  Google Scholar 

  24. Li YZ, Pullerits T, Zhao MY, Sun MT (2011) Theoretical characterization of the PC60BM:PDDTT mode for an organic solar cell. J Phys Chem C 115:21865–21873

    Article  CAS  Google Scholar 

  25. Li YZ, Li HX, Zhao XM, Chen MD (2010) Electronic structure and optical properties of dianionic and dicationic π-dimers. J Phys Chem A 114:6972–6977

    Google Scholar 

  26. Sun MT, Chen JN, Xu HX (2008) Visualizations of transition dipoles, charge transfer, and electron–hole coherence on electronic state transitions between excited states for two-photon absorption. J Chem Phys 128:064106

    Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G et al (2009) Gaussian 09, revision A.02. Gaussian Inc., Wallingford

  28. Dreizler JMR, Gross EKU (1990) Density functional theory. Springer, Heidelberg

  29. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  30. Becke AD (1993) Density–functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    Google Scholar 

  31. Lee C, Yang W, Parr RG (1998) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Google Scholar 

  32. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Google Scholar 

  33. Helgaker T et al. (2012) DALTON, release 2.0: an ab initio electronic structure program. http://www.kjemi.uio.no/program/dalton/dalton.html

  34. Tolbert LM (1992) Solitons in a box: the organic chemistry of electrically conducting polyenes. Acc Chem Res 25:561–568

    Article  CAS  Google Scholar 

  35. Ohta K, Kamada K (2006) Theoretical investigation of two-photon absorption allowed excited states in symmetrically substituted diacetylenes by ab initio molecular-orbital method. J Chem Phys 124:124303

    Article  Google Scholar 

  36. Beenken WJD, Pullerits T (2004) Excitonic coupling in polythiophenes: comparison of different calculation methods. J Chem Phys 120:2490

    Google Scholar 

  37. Loboda O, Zalesny R, Avramopoulos A, Luis JM, Kirtman B, Tagmatarchis N, Reis H, Papadopoulos MG (2009) Linear and nonlinear optical properties of [60]fullerene derivatives. J Phys Chem A 113:1159–1170

    Google Scholar 

  38. Willets A, Rice JE, Burland DM, Shelton DP (1992) Problems in the comparison of theoretical and experimental hyperpolarizabilities. J Chem Phys 97:7590–7599

    Article  Google Scholar 

  39. Fu J, Padilha LA, Hagan DJ, Van Stryland EW, Przhonska OV, Bondar MV, Slominsky YL, Kachkovski AD (2007) Molecular structure—two-photon absorption property relations in polymethine dyes. J Opt Soc Am B 24:56–66

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grants 10874234, 90923003, 10804015) and the Fundamental Research Funds for the Central Universities (grant no: DL12BB19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanzuo Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Shi, Y., Chen, M. et al. Molecular modeling of two-photon absorption and third-order nonlinearities of polymethine dyes for all-optical switching. J Mol Model 18, 4141–4149 (2012). https://doi.org/10.1007/s00894-012-1407-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1407-2

Keywords

Navigation