Skip to main content
Log in

Probing the linear and nonlinear optical properties of nitrogen-substituted carbon nanotube

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In view of their intriguing structural and electrical properties, the linear and nonlinear optical (NLO) responses of six carbon nanotube (CNT) molecules substituted by nitrogen atoms at one end have been explored by using the CAM-B3LYP method. Molecules 1, 2 and 3 were obtained by increasing the lengths of the CNTs, and 1-Li, 2-Li and 3-Li were constructed by doping one Li atom into the N-substituted end of 1, 2 and 3 (mentioned above), respectively. Two effective approaches have been proposed to increase nonlinear optical properties(NLO): increasing the length of the CNT as well as doping one Li atom into the N-substituted end. The results show that both the linear polarizabilities (α 0) and nonlinear first hyperpolarizabilities (β tot) values increase with increasing the lengths of the CNTs: 188 of 1 < 307 of 2 < 453 of 3 for α 0 and 477 of 1 < 2654 of 2 < 3906 au of 3 for β tot. Significantly, compared with the non-doped CNTs, the β tot values are remarkably enhanced by doping one Li atom into the N-substituted end: 477 of 1 < 23258 of 1-Li, 2654 of 2 < 37244 of 2-Li, and 3906 of 3 < 72004 au of 3-Li. Moreover, the β vec values show a similar trend to the β tot values. Our results may be beneficial to experimentalists in exploring high-performance nonlinear optical materials based on CNT.

The first hyperpolarizabilities increase with increasing the lengths of the CNTs. Significantly, compared with the Non-doped CNTs, the first hyperpolarizabilities are remarkably enhanced by doping one Li atom into the N-substituted end

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boyd RW (1992) Nonlinear optics. Academic, San Diego

    Google Scholar 

  2. Zyss J (1994) Molecular nonlinear optics: materials, physics and devices. Academic, New York

    Google Scholar 

  3. Prasad PN, Williams DJ (1991) Introduction to nonlinear optical effects in molecules and polymers. New York

  4. Nalwa HS, Miyata S (1997) Nonlinear optics of organic molecules and polymers. CRC, Boca Raton

    Google Scholar 

  5. Torre G, Vázquez P, Lόpez FA, Torres T (2004) Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem Rev 104:3723–3750

    Article  Google Scholar 

  6. Ostroverkhova O, Moerner WE (2004) Organic photorefractives: mechanisms, materials, and applications. Chem Rev 104:3267–3314

    Article  CAS  Google Scholar 

  7. Burland DM, Miller RD, Walsh CA (1994) Second-order nonlinearity in poled-polymer systems. Chem Rev 94:31–75

    Article  CAS  Google Scholar 

  8. Eisenthal KB (2006) Second harmonic spectroscopy of aqueous nano- and microparticle interfaces. Chem Rev 106:1462–1477

    Article  CAS  Google Scholar 

  9. Coe BJ (2005) Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups. Acc Chem Res 39:383–393

    Article  Google Scholar 

  10. Dalton LR, Sullivan PA, Bale DH (2010) Electric field poled organic electro-optic materials: state of the art and future prospects. Chem Rev 110:25–55

    Article  CAS  Google Scholar 

  11. Xu HL, Li ZR, Su ZM, Muhammad S, Gu FL, Harigaya K (2009) Knot-isomers of möbius cyclacene: how does the number of knots influence the structure and first hyperpolarizability? J Phys Chem C 113:15380–15383

    Article  CAS  Google Scholar 

  12. Muhamma S, Xu HL, Liao Y, Kan YH, Su ZM (2009) Quantum mechanical design and structure of the Li@B10H14 basket with a remarkably enhanced electro-optical response. J Am Chem Soc 131:11833–11840

    Article  Google Scholar 

  13. Xu HL, Li ZR, Wang FF, Wu D, Harigaya K, Gu FL (2008) What is the shape effect on the (hyper)polarizabilities? a comparison study on the möbius, normal cyclacene, and linear nitrogen-substituted strip polyacenes. Chem Phys Lett 454:323–326

    Article  CAS  Google Scholar 

  14. Papadopoulos MG, Waite J (1990) Analysis of some significant processes for molecular polarization. J Chem Soc Faraday Trans 86:3525–3529

    Article  CAS  Google Scholar 

  15. Chung I, Jang JI, Malliakas CD, Ketterson JB, Kanatzidis MG (2010) Strongly nonlinear optical glass fibers from noncentrosymmetric phase-change chalcogenide materials. J Am Chem Soc 132:384–389

    Article  CAS  Google Scholar 

  16. Ishifuji M, Mitsuishi M, Miyashita T (2009) Bottom-up design of hybrid polymer nanoassemblies elucidates plasmon-enhanced second harmonic generation from nonlinear optical dyes. J Am Chem Soc 131:4418–4424

    Article  CAS  Google Scholar 

  17. DiBenedetto SA, Frattarelli DL, Facchetti A, Ratner MA, Marks TJ (2009) Structure−performance correlations in vapor phase deposited self-assembled nanodielectrics for organic field-effect transistors. J Am Chem Soc 131:11080–11090

    Article  CAS  Google Scholar 

  18. Reeve JE, Collins HA, Mey KD, Kohl MM, Thorley KJ, Paulsen O, Clays K, Anderson HL (2009) Amphiphilic porphyrins for second harmonic generation imaging. J Am Chem Soc 131:2758–2759

    Article  CAS  Google Scholar 

  19. Frattarelli D, Schiavo M, Facchetti A, Ratner MA, Marks TJ (2009) Self-assembly from the gas-phase: design and implementation of small-molecule chromophore precursors with large nonlinear optical responses. J Am Chem Soc 131:12595–12612

    Article  CAS  Google Scholar 

  20. Sun CF, Hu CL, Xu X, Ling JB, Hu T, Kong F, Long XF, Mao JG (2009) BaNbO(IO3)5: a new polar material with a very large SHG response. J Am Chem Soc 131:9486–9487

    Article  CAS  Google Scholar 

  21. Cariati E, Macchi R, Roberto D, Ugo R, Galli S, Casati N, Macchi P, Sironi A, Bogani L, Caneschi A, Gatteschi D (2007) Polyfunctional inorganic−organic hybrid materials: an unusual kind of NLO active layered mixed metal oxalates with tunable magnetic properties and very large second harmonic generation. J Am Chem Soc 129:9410–9420

    Article  CAS  Google Scholar 

  22. Asselberghs I, Flors C, Ferrighi L, Botek E, Champagne B, Mizuno H, Ando R, Miyawaki A, Hofkens J, Van der Auweraer M, Clays K (2008) Second-harmonic generation in GFP-like proteins. J Am Chem Soc 130:15713–15719

    Article  CAS  Google Scholar 

  23. Lecaque LB, Coe BJ, Clays K, Foerier S, Verbiest T, Asselberghs I (2008) Redox-switching of nonlinear optical behavior in langmuir−blodgett thin films containing a ruthenium(II) ammine complex. J Am Chem Soc 130:3286–3287

    Article  Google Scholar 

  24. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  25. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  26. Snow ES, Perkins FK, Houser EJ, Badescu SC, Reinecke TL (2005) Chemical detection with a single-walled carbon nanotube capacitor. Science 307:1942–1945

    Article  CAS  Google Scholar 

  27. Hu LB, Hecht DS, Grüner G (2010) Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev 110:5790–5844

    Article  CAS  Google Scholar 

  28. Xiao DQ, Bulat FA, Yang WT, Beratan DN (2008) A donor−nanotube paradigm for nonlinear optical materials. Nano Lett 8:2814–2818

    Article  CAS  Google Scholar 

  29. Alexiadis A, Kassinos S (2008) Molecular simulation of water in carbon nanotubes. Chem Rev 108:5014–5034

    Article  CAS  Google Scholar 

  30. Qin LC, Zhao XL, Hirahara K, Miyamoto Y, Ando Y, Iijima S (2000) Materials science: the smallest carbon nanotube. Nature 408:50–50

    Article  CAS  Google Scholar 

  31. Xu HL, Wang FF, Li ZR, Wang Q, Wu D, Chen W, Yu GT, Gu FL, Aoki Y (2008) The nitrogen edge-doped effect on the static first hyperpolarizability of the supershort single-walled carbon nanotube. J Comput Chem 30:1128–1134

    Article  Google Scholar 

  32. Chen W, Yu GT, Gu FL, Aoki Y (2009) Investigation on the electronic structures and nonlinear optical properties of pristine boron nitride and boron nitride−carbon heterostructured single-wall nanotubes by the elongation method. J Phys Chem C 113:8447–8454

    Article  CAS  Google Scholar 

  33. Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL (2005) The structure and the large nonlinear optical properties of Li@Calix[4]pyrrole. J Am Chem Soc 127:10977–10981

    Article  CAS  Google Scholar 

  34. Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL, Aoki Y (2006) Nonlinear optical properties of alkalides Li+(calix[4]pyrrole)M (M = Li, Na, and K): alkali anion atomic number dependence. J Am Chem Soc 128:1072–1073

    Article  CAS  Google Scholar 

  35. Champagne B, Spassova M, Jadin JB, Kirtman B (2002) Ab initio investigation of doping-enhanced electronic and vibrational second hyperpolarizability of polyacetylene chains. J Chem Phys 116:3935–3946

    Article  CAS  Google Scholar 

  36. Raptis SG, Papadopoulos MG, Sadlej AJ (2000) Hexalithiobenzene: a molecule with exceptionally high second hyperpolarizability. Phys Chem Chem Phys 2:3393–3399

    Article  CAS  Google Scholar 

  37. Hu YY, Sun SL, Muhammad S, Xu HL, Su ZM (2010) How the number and location of lithium atoms affect the first hyperpolarizability of graphene. J Phys Chem C 114:19792–19798

    Article  CAS  Google Scholar 

  38. Zhang CC, Xu HL, Hu YY, Sun SL, Su ZM (2011) Quantum chemical research on structures, linear and nonlinear optical properties of the Li@n-Acenes salt (n = 1, 2, 3, and 4). J Phys Chem A 115:2035–2040

    Article  CAS  Google Scholar 

  39. Wang FF, Li ZR, Wu D, Wang BQ, Li Y, Li ZJ, Chen W, Yu GT, Gu FL, Aoki Y (2008) Structures and considerable static first hyperpolarizabilities: new organic alkalides (M+@n 6adz)M'- (M, M' = Li, Na, K; n = 2, 3) with cation inside and anion outside of the cage complexants. J Phys Chem B 112:1090–1094

    Article  CAS  Google Scholar 

  40. Xu HL, Li ZR, Wu D, Ma F, Li ZJ (2009) Lithiation and Li-doped effects of [5]cyclacene on the static first hyperpolarizability. J Phys Chem C 113:4984–4986

    Article  CAS  Google Scholar 

  41. Xu HL, Li ZR, Wu D, Wang BQ, Li Y, Gu FL, Aoki Y (2007) Structures and large NLO responses of new electrides: Li-doped fluorocarbon chain. J Am Chem Soc 129:2967–2970

    Article  CAS  Google Scholar 

  42. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  43. Lee C, Yang W, Parr RG (1988) Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  44. Scott AP, Radom L (1996) Harmonic vibrational frequencies: an evaluation of hartree−fock, møller−plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  45. Ma F, Li ZR, Zhou ZJ, Wu D, Li Y, Wang YF, Li ZS (2010) Modulated nonlinear optical responses and charge transfer transition in endohedral fullerene dimers Na@C60C60@F with n-fold covalent bond (n = 1, 2, 5, and 6) and long range ion bond. J Phys Chem C 114:11242–11247

    Article  CAS  Google Scholar 

  46. Wang YF, Li ZR, Wu D, Sun CC, Gu FL (2010) Excess electron is trapped in a large single molecular cage C60F60. J Comput Chem 31:195–203

    Article  Google Scholar 

  47. Ma F, Zhou ZJ, Liu YT, Zhang YZ, Miao TF, Li ZR (2011) Substituted graphene nano-flakes: defective structure and large nonlinear optical property. Chem Phys Lett 504:211–215

    Article  CAS  Google Scholar 

  48. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  49. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120:8425–8433

    Article  CAS  Google Scholar 

  50. Maroulis G, Pouchan C (2003) Size and electric dipole (hyper)polarizability in small cadmium sulfide clusters: an ab initio study on (CdS)n, n ) 1, 2, and 4. J Phys Chem 107:10683–10686

    Article  CAS  Google Scholar 

  51. Maroulis G, Karamanis P (2006) Molecular geometry and polarizability of small cadmium selenide clusters from all-electron ab initio and density functional theory calculations. J Chem Phys 124:071101

    Article  Google Scholar 

  52. Maroulis G, Karamanis P, Pouchan C (2007) Hyperpolarizability of GaAs dimer is not negative. J Chem Phys 126:154316

    Article  Google Scholar 

  53. Karamanis P, Pouchan C, Maroulis G (2008) Structure, stability, dipole polarizability and differential polarizability in small gallium arsenideclusters from all-electron ab initio and density-functional-theory calculations. Phys Rev A 77:013201

    Article  Google Scholar 

  54. Cai ZL, Crossley MJ, Reimers JR, Kobayashi R, Amos RD (2006) Density functional theory for charge transfer: the nature of the N-bands of porphyrins and chlorophylls revealed through CAM-B3LYP, CASPT2, and SAC-CI calculations. J Phys Chem B 110:15624–15632

    Article  CAS  Google Scholar 

  55. Peach MJG, Helgaker T, Sałek P, Keal TW, Lutnæs OB, Tozer DJ, Handy NC (2006) Assessment of a coulomb-attenuated exchange–correlation energy functional. Phys Chem Chem Phys 8:558–562

    Article  CAS  Google Scholar 

  56. Polavarapu PL, Donahue EA, Shanmugam G, Scalmani G, Hawkins EK, Rizzo C, Ibnusaud I, Thomas G, Habel D, Sebastian D (2011) A single chiroptical spectroscopic method may not be able to establish the absolute configurations of diastereomers: dimethylesters of hibiscus and garcinia acids. J Phys Chem A 115:5665–5673

    Article  CAS  Google Scholar 

  57. Maroulis G (2008) How large is the static electric(hyper)polarizability anisotropy in HXeI? J Chem Phys 129:044314

    Article  Google Scholar 

  58. Karamanis P, Maroulis G (2011) An ab initio study of CX3-substitution (X = H, F, Cl, Br, I) effects on the static electric polarizability and hyperpolarizability of diacetylene. J Phys Org Chem 24:588–599

    Article  CAS  Google Scholar 

  59. Maroulis G (2011) Electric multipole moments, polarizability, and hyperpolarizability of xenon dihydride (HXeH). Theor Chem Acc 129:437–445

    Article  CAS  Google Scholar 

  60. Bulat FA, Toro-Labbe A, Champagne B, Kirtman B, Yang W (2005) Density-functional theory (hyper)polarizabilities of push-pull π-conjugated systems: treatment of exact exchange and role of correlation. J Chem Phys 123:014319

    Article  Google Scholar 

  61. Champagne B, Bulat FA, Yang W, Bonness S, Kirtman B (2006) Density functional theory investigation of the polarizability and second hyperpolarizability of polydiacetylene and polybutatriene chains: treatment of exact exchange and role of correlation. J Chem Phys 125:194114

    Article  Google Scholar 

  62. Kirtman B, Bonness S, Ramirez-Solis A, Champagne B, Matsumoto H, Sekino H (2008) Calculation of electric dipole hyper…polarizabilities by long-rangecorrection scheme in density functional theory: a systematic assessment for polydiacetylene and polybutatriene oligomers. J Chem Phys 128:114108

    Article  Google Scholar 

  63. Maroulis G (2000) Static hyperpolarizability of the water dimer and the interaction hyperpolarizability of two water molecules. J Chem Phys 113:1813–1820

    Article  CAS  Google Scholar 

  64. Frisch MJ et al (2003) Gaussian 03, revision C.02. Gaussian Inc, Pittsburgh

    Google Scholar 

  65. Frisch MJ et al (2009) Gaussian 09, revision A.02. Gaussian Inc, Wallingford

    Google Scholar 

  66. Champagnea B, Kirtman B (2006) Evaluation of alternative sum-over-states expressions for the first hyperpolarizability of push-pull π-conjugated systems. J Chem Phys 125:024101

    Article  Google Scholar 

  67. Oudar JL, Chemla DS (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J Chem Phys 66:2664–2668

    Article  CAS  Google Scholar 

  68. Kanis DR, Ratner MA, Marks TJ (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem Rev 94:195–242

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21003019), Support by Doctoral Fund of Ministry of Education of China (20100043120006), the Fundamental Research Funds for the Central Universities (No. 10SSXT004), Science Foundation for Young Teachers of Northeast Normal University (No. 20090402), the project supported by the Foundation for Young Scholars of Jilin Province, China (Grant No. 20100178).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Liang Xu or Zhong-Min Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, SL., Hu, YY., Xu, HL. et al. Probing the linear and nonlinear optical properties of nitrogen-substituted carbon nanotube. J Mol Model 18, 3219–3225 (2012). https://doi.org/10.1007/s00894-011-1334-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1334-7

Keywords

Navigation