Skip to main content
Log in

A systematical comparison of DFT methods in reproducing the interaction energies of halide series with protein moieties

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A systematic theoretical investigation on the interaction energies of halogen-ionic bridges formed between halide ions and the polar H atoms bonded to N of protein moieties has been carried out by employing a variety of density functional methods. In this procedure, full geometry optimizations are performed at the Møller-Plesset second-order perturbation (MP2) level of theory in conjunction with the Dunning’s augmented correlation-consistent basis set, aug-cc-pVDZ. Subsequently, two distinct basis sets, i.e. 6-311++G(df,pd) and aug-cc-pVTZ, are employed in the following single-point calculations so as to check the stability of the results obtained at the different levels of DFT. The performance of DFT methods has been evaluated by comparing the results with those obtained from the rigorous MP2 theory. It is shown that the B98, B97-1, and M05 give the lowest root-mean-square error (RMSE) for predicting fluoride-binding energies, M05-2X, MPW1B95, and MPW1PW91 have the best performance in reproducing chloride-binding energies, B97-1, PBEKCIS, and PBE1KCIS present the optimal result for bromide-binding energies, while B97-1, MPW1PW91, and TPSS perform most well on iodide-binding energies. The popular B3LYP functional seems to be quite modest for studying halide-protein moiety interactions. In addition, the PBE1KCIS functional provide accuracies close to the computationally expensive MP2 method for the calculation of interaction energies of all halide-binding systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Takashima K, Riveros JM (1998) Mass Spectrom Rev 17:409, and reference cited therein

    Article  CAS  Google Scholar 

  2. Zavitsas AA (2001) J Phys Chem B 105:7805–7817

    Article  CAS  Google Scholar 

  3. Hosoda H, Mori H, Sogoshi N, Nagasawa A, Nakabayashi SJ (2004) Phys Chem A 108:1461–1464

    Article  CAS  Google Scholar 

  4. Schleich T, von Hippel PH (1969) Biopolymers 7:861–877

    Article  CAS  Google Scholar 

  5. Zhang Y, Cremer PS (2006) Curr Opin Chem Biol 10:658–663

    Article  CAS  Google Scholar 

  6. Kunz W, Lo Nostro P, Ninham BW (2004) Curr Opin Colloid Int Sci 9:1–18

    Article  CAS  Google Scholar 

  7. Ninham BW (1999) Adv Colloid Int Sci 83:1–17

    Article  CAS  Google Scholar 

  8. Aroti A, Leontidis E, Dubois M, Zemb T, Brezesinski G (2007) Colloids Surf A Physicochem Eng Aspects 303:144–158

    Article  CAS  Google Scholar 

  9. Curtis RA, Lue L (2006) Chem Eng Sci 61:907–923

    Article  CAS  Google Scholar 

  10. Prausnitz J, Foose L (2007) Pure Appl Chem 79:1435–1444

    Article  CAS  Google Scholar 

  11. Kunz W (2009) Specific ion effects in nature and technology, 1st edn. World Scientific Publishing

  12. Boström M, Williams D, Ninham BW (2001) Langmuir 17:4475–4478

    Article  Google Scholar 

  13. Boström M, Williams D, Ninham BW (2001) Phys Rev Lett 87:168103/1–168103/4

    Article  Google Scholar 

  14. Böstrom M, Tavares FW, Bratko D, Ninham BW (2005) J Phys Chem B 109:24489–24494

    Article  Google Scholar 

  15. Boström M, Kunz W, Ninham BW (2005) Langmuir 21:2619–2623

    Article  Google Scholar 

  16. Jungwirth P, Tobias DJ (2001) J Phys Chem B 105:10468–10472

    Article  CAS  Google Scholar 

  17. Lund M, Vácha R, Jungwirth P (2008) Langmuir 24:3387–3391

    Article  CAS  Google Scholar 

  18. Hofmeister F (1888) Arch Exp Pathol Pharmakol 24:247–260

    Article  Google Scholar 

  19. Ninham BW, Yaminsky V (1997) Langmuir 13:2097–2108

    Article  CAS  Google Scholar 

  20. Boström M, Lonetti B, Fratini E, Baglioni P, Ninham BW (2006) J Phys Chem B 110:7563–7566

    Article  Google Scholar 

  21. Laage D, Hynes JT (2006) Science 311:832–835

    Article  CAS  Google Scholar 

  22. Zhou P, Ren Y, Tian F, Zou J, Shang Z (2010) J Chem Theor Comput 6:2225–2241

    Article  CAS  Google Scholar 

  23. Zhou P, Tian F, Liu X, Ren Y, Shang Z (2010) J Phys Chem B 114:15673–15686

    Article  CAS  Google Scholar 

  24. Lu Y, Shi T, Wang Y, Yang H, Yan X, Luo X, Jiang H, Zhu WJ (2009) J Med Chem 52:2854–2862

    Article  CAS  Google Scholar 

  25. Lu Y, Wang Y, Xu Z, Yan X, Luo X, Jiang H, Zhu WJ (2009) J Phys Chem B 113:12615–12621

    Article  CAS  Google Scholar 

  26. Alzate-Morales JH, Caballero J, Jague AV, Nilo FDG (2009) J Chem Inf Model 49:886–899

    Article  CAS  Google Scholar 

  27. Zhao Y, Truhlar DG (2005) J Chem Theor Comput 1:415–432

    Article  CAS  Google Scholar 

  28. Wesolowski TA, Parisel O, Ellinger Y, Weber J (1997) J Phys Chem A 101:7818–7825

    Article  CAS  Google Scholar 

  29. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theor Comput 2:364–382

    Article  Google Scholar 

  30. Riley KE, Opt Holt BT, Merz KM Jr (2007) J Chem Theor Comput 3:407–433

    Article  CAS  Google Scholar 

  31. Cybulski SM, Seversen CE (2005) J Chem Phys 122:14117

    Article  Google Scholar 

  32. Dahlke EE, Truhlar DG (2005) J Phys Chem B 109:15677–15683

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.01. Gaussian Inc, Wallingford, CT

    Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford, CT

    Google Scholar 

  35. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  36. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  37. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  38. Perdew JP (1991) In: Ziesche P, Eschig H (eds) Electronic structure of solids. Akademie, Berlin, pp 11–20

    Google Scholar 

  39. Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998) J Chem Phys 109:6264–6271

    Article  CAS  Google Scholar 

  40. Adamo C, Barone V (1998) J Chem Phys 108:664–675

    Article  CAS  Google Scholar 

  41. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  42. Rey J, Savin A (1998) Int J Quantum Chem 69:581–590

    Article  CAS  Google Scholar 

  43. Krieger JB, Chen J, Iafrate GJ, Savin A (1999) Electron Correl Mater Prop p463

  44. Toulouse J, Savin A, Adamo C (2002) J Chem Phys 117:10465–10473

    Article  CAS  Google Scholar 

  45. Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003) J Chem Phys 119:12129–12137

    Article  CAS  Google Scholar 

  46. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401/1–146401/4

    Article  CAS  Google Scholar 

  47. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  48. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  49. Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG, Wong MW, Foresman JB, Robb MA, Head-Gordon M, Replogle ES, Gomperts R, Andres JL, Raghavachari K, Binkley JS, Gonzalez C, Martin RL, Fox DJ, Defrees DJ, Baker J, Stewart JJP, Pople JA (1993) Gaussian 92/DFT Revision F.2; Gaussian Inc Pittsburgh PA

  50. Perdew JP, Kurth S, Zupan A, Blaha P (1999) Phys Rev Lett 82:2544–2547

    Article  CAS  Google Scholar 

  51. Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) J Phys Chem A 104:4811–4815

    Article  CAS  Google Scholar 

  52. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908–6918

    Article  CAS  Google Scholar 

  53. Handy NC, Cohen A (2001) J Mol Phys 99:403–412

    Article  CAS  Google Scholar 

  54. Hoe WM, Cohen AJ, Handy NC (2001) Chem Phys Lett 341:319–328

    Article  CAS  Google Scholar 

  55. Xu X, Goddard WA (2004) PNAS 101:2673–2677

    Article  CAS  Google Scholar 

  56. Zhao Y, González-García N, Truhlar DG (2005) J Phys Chem A 109:2012–2018

    Article  CAS  Google Scholar 

  57. Zhao Y, Lynch BJ, Truhlar DG (2005) Phys Chem Chem Phys 7:43–52

    Article  CAS  Google Scholar 

  58. Zhao Y, Schultz NE, Truhlar DG (2005) J Chem Phys 123:161103/1–161103/4

    CAS  Google Scholar 

  59. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  60. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:13126–13130

    Article  CAS  Google Scholar 

  61. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  62. Slater JC (1974) The self-consistent field for molecular and solids, vol 4. McGraw-Hill, New York

    Google Scholar 

  63. Lu Y, Wang Y, Zhu W (2010) Phys Chem Chem Phys 12:4543–4551

    Article  CAS  Google Scholar 

  64. Zhao Y, Truhlar DG (2007) J Chem Theory Comput 3:289–300

    Article  CAS  Google Scholar 

  65. Gapeev A, Dunbar RC (2002) J Am Soc Mass Spectrom 13:477–484

    Article  CAS  Google Scholar 

  66. Zhao YX, Wang SG (2005) Chin Chem Lett 16:1555–1558

    CAS  Google Scholar 

  67. Goossen LJ, Koley D, Hermann HL (2005) Organometallics 24:2398–2410

    Article  CAS  Google Scholar 

  68. Lu Y, Zou J, Wang H, Yu Q, Zhang H, Jiang Y (2005) J Phys Chem A 109:11956–11961

    Article  CAS  Google Scholar 

  69. Lu Y, Zou J, Fan J, Zhao W, Jiang Y, Yu Q (2009) J Comput Chem 30:725–732

    Article  CAS  Google Scholar 

  70. Lu SY, Jiang YJ, Zhou P, Zou JW, Wu TX (2010) Chem Phys Lett 485:348–353

    Article  CAS  Google Scholar 

  71. Zhou P, Zou JW, Tian FF, Shang ZC (2009) J Chem Inf Model 49:2344–2355

    Article  CAS  Google Scholar 

  72. Chao SD, Li AH (2007) J Phys Chem A 111:9586–9590

    Article  CAS  Google Scholar 

  73. Benedek NA, Latham K, Snook IK, Yarovsky I (2006) J Phys Chem B 110:19605–19610

    Article  CAS  Google Scholar 

  74. Park H, Yoon J, Seok C (2008) J Phys Chem B 112:1041–1048

    Article  CAS  Google Scholar 

  75. Rubicelia V, Jorge G, David AD, Benjamin PH (2000) J Am Chem Soc 122:4750–4755

    Article  Google Scholar 

  76. Tsuzuki S, Houjou H, Nagawa Y, Goto M, Hiratani K (2001) J Am Chem Soc 123:4255–4258

    Article  CAS  Google Scholar 

  77. Dkhissi A, Blossey R (2007) Chem Phys Lett 439:35–39

    Article  CAS  Google Scholar 

  78. Erin RJ, Robert AW, Gino AD (2004) Chem Phys Lett 394:334–338

    Article  Google Scholar 

  79. Glukhovtsev MN, Pross A, Radom L (1995) J Am Chem Soc 117:2024–2032

    Article  CAS  Google Scholar 

  80. Sanov A, Faeder J, Parson R, Lineberger WC (1999) Chem Phys Lett 313:812–819

    Article  CAS  Google Scholar 

  81. Rappe AK, Bernstein ER (2000) J Phys Chem A 104:6117–6128

    Article  CAS  Google Scholar 

  82. Chesnut DB, Moseley RW (1969) Theor Chim Acta 13:230–248

    Article  CAS  Google Scholar 

  83. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  84. Krivov GG, Shapovalov MV, Dunbrack RL Jr (2009) Proteins 77:778–795

    Article  CAS  Google Scholar 

  85. Kabsch W, Sander C (1983) Biopolymers 22:2577–2637

    Article  CAS  Google Scholar 

  86. Word JM, Lovell SC, Richardson JS, Richardson DC (1999) J Mol Biol 285:1735–1747

    Article  CAS  Google Scholar 

  87. Zhou P, Tian F, Lv F, Shang Z (2009) Proteins 76:151–163

    Article  CAS  Google Scholar 

  88. Bas DC, Rogers DM, Jensen JH (2008) Proteins 73:765–783

    Article  CAS  Google Scholar 

  89. Zhao Y, Cheng T, Wang R (2007) J Chem Inf Model 47:1379–1385

    Article  CAS  Google Scholar 

  90. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  91. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  92. Yerushalmi R, Brandis A, Rosenbach-Belkin V, Baldridge KK, Scherz A (2006) J Phys Chem A 110:412–421

    Article  CAS  Google Scholar 

  93. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  94. Arshadi M, Yamdagni R, Kebarle P (1970) J Phys Chem 74:1475–1482

    Article  CAS  Google Scholar 

  95. Hiraoka K, Mizuse S, Yamabe S (1988) J Phys Chem 92:3943–3957

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicai Shang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Zhou, P. & Shang, Z. A systematical comparison of DFT methods in reproducing the interaction energies of halide series with protein moieties. J Mol Model 18, 2079–2098 (2012). https://doi.org/10.1007/s00894-011-1232-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1232-z

Keywords

Navigation