Skip to main content
Log in

CYP isoform specificity toward drug metabolism: analysis using common feature hypothesis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Three dimensional pharmacophoric maps were generated for each isoforms of CYP2C9, CYP2D6 and CYP3A4 separately using independent training sets consist of highly potent substrates (seven substrates for each isoform). HipHop module of CATALYST software was used in the generation of pharmacophore models. The best pharmacophore model was chosen out of the several models on the basis of (i) highest ranking score, (ii) better fit value among training set, (iii) capability to screen substrates from data set and (iv) efficiency to identify the isoform specificity. The individual pharmacophore models (CYP2C9-hypo1, CYP2D6-hypo1 and CYP3A4-hypo1) are characterized by the pharmacophoric features XZDH, RPZH and XYZHH for the CYP2C9, CYP2D6 and CYP3A4 respectively. Each of the chosen models was validated by using data sets of CYP substrates. This comparative study of CYP substrates demonstrates the importance of acidic character along with HBD and HBAl features for CYP2C9, basic character with ring aromatic features for CYP2D6 and hydrophobic features for CYP3A4. Acidity, basicity and hydrophobicity features arising from the functional groups of the substrates are also responsible for demonstrating CYP isoform specificity. Hence, these chemical features are incorporated in the decision tree along with pharmacophore maps. Finally, a decision tree based on chemical features and pharmacophore features was generated to identify the isoform specificity of novel query molecule toward the three isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Guengerich FP, MacDonald JS (2007) Chem Res Toxicol 20:344–369

    Article  CAS  Google Scholar 

  2. Ortiz de Montellano PR (2005) Cytochrome P450: structure, mechanism and biochemistry, 3rd edn. Kluwer, New York, pp 1–7

    Google Scholar 

  3. Rendic S, Carlo FJD (1997) Drug Metab Rev 29:413–580

    Article  CAS  Google Scholar 

  4. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE (2004) Drug Metab Dispos 32:1201–1208

    Article  CAS  Google Scholar 

  5. Bazeley PS, Prithivi S, Struble CA, Povinelli RJ, Sem DS (2006) J Chem Inf Model 46:2698–2708

    Article  CAS  Google Scholar 

  6. Guengerich FP (1999) Ann Rev Pharmacol Toxicol 39:1–17

    Article  CAS  Google Scholar 

  7. Wester MR, Yano JK, Schoch GA, Yang C, Griffin KJ, Stout CD, Johnson EF (2004) J Biol Chem 279:35630–35637

    Article  CAS  Google Scholar 

  8. Boelsterli UA (2003) Toxicol Appl Pharmacol 192:307–322

    Article  CAS  Google Scholar 

  9. Margolis JM, O’Donnell JP, Mankowski DC, Ekins S, Obach RS (2000) Drug Metab Dispos 28:1187–1191

    CAS  Google Scholar 

  10. Rowland P, Blaney FE, Smyth MG, Jones JJ, Leydon VR, Oxbrow AK, Lewis CJ, Tennant MG, Modi S, Eggleston DS (2006) J Biol Chem 281:7614–7622

    Article  CAS  Google Scholar 

  11. Terfloth L, Bienfait B, Gasteiger J (2007) J Chem Inf Model 47:1688–1701

    Article  CAS  Google Scholar 

  12. Manga N, Duffy JC, Rowe PH, Cronin MT (2005) SAR QSAR Environ Res 16:43–61

    Article  CAS  Google Scholar 

  13. Yap CW, Chen YZ (2005) J Chem Inf Model 45:982–992

    Article  CAS  Google Scholar 

  14. Block JH, Henry DR (2008) J Comput Aided Mol Des 22:385–392

    Article  CAS  Google Scholar 

  15. de Groot MJ, Alex AA, Jones BC (2002) J Med Chem 45:1983–1993

    Article  Google Scholar 

  16. Jones BC, Hawksworth G, Horne VA, Newlands A, Morsman J, Tute MS, Smith DA (1996) Drug Metab Dispos 24:260–266

    CAS  Google Scholar 

  17. Mancy A, Broto P, Dijols S, Dansette PM, Mansuy D (1995) Biochemistry 34:10365–10375

    Article  CAS  Google Scholar 

  18. Wolff T, Distlerath LM, Worthington MT, Groopman JD, Hammons GJ, Kadlubar FF, Prough RA, Martin MV, Guengerich FP (1985) Cancer Res 45:2116–2122

    CAS  Google Scholar 

  19. Meyer UA, Gut J, Kronbach T, Skoda C, Meier UT, Catin T, Dayer P (1986) Xenobiotica 16:449–464

    Article  CAS  Google Scholar 

  20. Koymans L, Vermeulen NP, van Acker SA, Te Koppele JM, Heykants JJ, Lavrijsen K, Meuldermans W, Donné-Op KGM (1992) Chem Res Toxicol 5:211–219

    Article  CAS  Google Scholar 

  21. Lewis DFV, Eddershaw PJ, Goldfarb PS, Tarbit MH (1996) Xenobiotica 26:1067–1086

    CAS  Google Scholar 

  22. Ekins S, Bravi G, Wikel JH, Wrighton SA (1999) J Pharmacol Exp Ther 291:424–433

    CAS  Google Scholar 

  23. Cruciani G, Carosati E, De Boeck B, Ethirajulu K, Mackie C, Howe T, Vianello R (2005) J Med Chem 48:6970–6979

    Article  CAS  Google Scholar 

  24. Hennemann M, Friedl A, Lobell M, Keldenich J, Hillisch A, Clark T, Göller A (2009) Chem Med Chem 4:657–669

    CAS  Google Scholar 

  25. Boyer S, Hasselgren Arnby C, Carlsson L, Smith J, Stein V, Glen RC (2007) J Chem Inf Model 47:583–590

    Article  CAS  Google Scholar 

  26. SYBYL version 6.9 (2007) Tripos Inc, 1699 South Hanley Road, St Louis, MO 63144, USA

  27. CATALYST version 4.10 (2005) Accelrys Inc, San Diego, CA. http://www.accelrys.com

  28. Adane L, Patel DS, Bharatam PV (2009) Chem Biol Drug Des 75:115–126

    Google Scholar 

  29. Sundriyal S, Sharma RK, Jain R, Bharatam PV (2008) J Mol Model 14:265–278

    Article  CAS  Google Scholar 

  30. Williams PA, Cosme J, Ward A, Angove HC, Vinkovic DM, Jhoti H (2003) Nature 424:464–468

    Article  CAS  Google Scholar 

  31. Ridderström M, Masimirembwa C, Trump-Kallmeyer S, Ahlefelt M, Otter C, Andersson TB (2000) Biochem Biophys Res Commun 270:983–987

    Article  Google Scholar 

  32. Dickmann LJ, Locuson CW, Jones JP, Rettie AE (2004) Mol Pharmacol 65:842–850

    Article  CAS  Google Scholar 

  33. Hanna IH, Krauser JA, Cai H, Kim MS, Guengerich FP (2001) J Biol Chem 276:39553–39561

    Article  CAS  Google Scholar 

  34. Kirton SB, Kemp CA, Tomkinson NP, St Gallay S, Sutcliffe MJ (2002) Proteins 49:216–231

    Article  CAS  Google Scholar 

  35. Paine MJI, McLaughlin LA, Flanagan JU, Kemp CA, Sutcliffe MJ, Roberts GCK, Wolf CR (2003) J Biol Chem 278:4021–4027

    Article  CAS  Google Scholar 

  36. Fishelovitch D, Shaik S, Wolfson HJ, Nussinov R (2009) J Phys Chem B 113:13018–13025

    Article  CAS  Google Scholar 

  37. Tang C, Shou M, Rodrigues AD (2000) Drug Metab Dispos 28:567–572

    CAS  Google Scholar 

  38. Iida I, Miyata A, Arai M, Hirota M, Akimoto M, Higuchi S, Kobayashi K, Chiba K (2004) Drug Metab Dispos 32:7–9

    Article  CAS  Google Scholar 

  39. Tang C, Shou M, Mei Q, Rushmore TH, Rodrigues AD (2000) J Pharmacol Exp Ther 293:453–459

    CAS  Google Scholar 

  40. Bajpai M, Roskos LK, Shen DD, Levy RH (1996) Drug Metab Dispos 24:1401–1403

    CAS  Google Scholar 

  41. Ufer M, Kammerer B, Kahlich R, Kirchheiner J, Yasar U, Brockmöller J, Rane A (2004) Xenobiotica 34:847–859

    Article  CAS  Google Scholar 

  42. Vickers AEM, Sinclair JR, Zollinger M, Heitz F, Glänzel U, Johanson L, Fischer V (1999) Drug Metab Dispos 27:1029–1038

    CAS  Google Scholar 

  43. Katoh M, Nakajima M, Shimada N, Yamazaki H, Yokoi T (2000) Eur J Clin Pharmacol 55:843–852

    Article  CAS  Google Scholar 

  44. Venhorst J, Onderwater RCA, Meerman JHN, Commandeur JNM, Vermeulen NPE (2000) Drug Metab Dispos 28:1524–1532

    CAS  Google Scholar 

  45. Olesen OV, Linnet K (2000) Pharmacology 59:298–309

    Article  Google Scholar 

  46. Matsumoto S, Yamazoe Y (2001) Br J Clin Pharmacol 51:133–142

    CAS  Google Scholar 

  47. Otton SV, Ball SE, Cheung SW, Inaba T, Rudolph RL, Sellers EM (1996) Br J Clin Pharmacol 41:149–156

    Article  CAS  Google Scholar 

  48. Kim KA, Chung J, Jung DH, Park JY (2004) Eur J Clin Pharmacol 60:575–581

    Article  CAS  Google Scholar 

  49. Olesen OV, Linnet K (1997) Pharmacology 55:235–243

    Article  CAS  Google Scholar 

  50. Klees TM, Sheffels P, Dale O, Kharasch ED (2005) Drug Metab Dispos 33:303–311

    Article  CAS  Google Scholar 

  51. Jacobsen W, Kuhn B, Soldner A, Kirchner G, Sewing KF, Kollman PA, Benet LZ, Christians U (2000) Drug Metab Dispos 28:1369–1378

    CAS  Google Scholar 

  52. Rakhit A, Pantze MP, Fettner S, Jones HM, Charoin JE, Riek M, Lum BL, Hamilton M (2008) Eur J Clin Pharmacol 64:31–41

    Article  CAS  Google Scholar 

  53. Huang W, Lin YS, McConn DJ, Calamia JC, Totah RA, Isoherranen N, Glodowski M, Thummel KE (2004) Drug Metab Dispos 32:1434–1445

    Article  CAS  Google Scholar 

  54. Jang GR, Wrighton SA, Benet LZ (1996) Biochem Pharmacol 52:753–761

    Article  CAS  Google Scholar 

  55. Emoto C, Murase S, Sawada Y, Jones BC, Iwasaki K (2003) Drug Metab Pharmacokinet 18:287–295

    Article  CAS  Google Scholar 

  56. Cameron MD, Wright J, Black CB, Ye N (2007) Drug Metab Dispos 35:1894–1902

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Department of Science and Technology (DST), New Delhi, India for providing the financial support to carry out the research work reported in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasad V. Bharatam.

Electronic supplementary material

The list of CYP substrates employed in data sets, validated pharmacophore maps and decision tree are given in supporting information.

ESM 1

(XLS 1608 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh, M., Bharatam, P.V. CYP isoform specificity toward drug metabolism: analysis using common feature hypothesis. J Mol Model 18, 709–720 (2012). https://doi.org/10.1007/s00894-011-1105-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1105-5

Keywords

Navigation