Skip to main content
Log in

Tetrahydroisoquinolines acting as dopaminergic ligands. A molecular modeling study using MD simulations and QM calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A molecular modeling study on 16 1-benzyl tetrahydroisoquinolines (BTHIQs) acting as dopaminergic ligands was carried out. By combining molecular dynamics simulations with ab initio and density functional theory (DFT) calculations, a simple and generally applicable procedure to evaluate the binding energies of BTHIQs interacting with the human dopamine D2 receptor (D2 DR) is reported here, providing a clear picture of the binding interactions of BTHIQs from both structural and energetic viewpoints. Molecular aspects of the binding interactions between BTHIQs and the D2 DR are discussed in detail. A significant correlation between binding energies obtained from DFT calculations and experimental pKi values was obtained, predicting the potential dopaminergic effect of non-synthesized BTHIQs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Oloff S, Mailman RB, Tropsha A (2005) Application of validated QSAR models of D1 dopaminergic antagonist for database mining. J Med Chem 48:7322–7332

    Article  CAS  Google Scholar 

  2. Sit SY, Xie K, Jacutin-Porte S, Boy KM, Seanz J, Taber MT, Gulwadi AG, Korpinen CD, Burris KD, Molski TF, Ryan E, Xu C, Verdoorn T, Johnson G, Nichols DE, Mailman RB (2004) Synthesis and SAR exploration of dinapsoline analogues. Bioorg Med Chem 12:715–734

    Article  CAS  Google Scholar 

  3. Strange PG (1997) Dopamine receptors. Tocris Reviews 15. Tocris Cookson, Bristol

  4. Zhang A, Neumeyer JL, Baldessarini RJ (2007) Recent progress in development of dopamine receptor subtype-selectiveagents: potential therapeutics for neurological and psychiatric disorders. Chem Rev 107:274–302

    Article  CAS  Google Scholar 

  5. Protais P, Arbaoui J, Bakkali EH, Bermejo A, Cortes D (1995) Effects of various isoquinoline alkaloids on in vitro 3H-dopamine uptake. J Nat Prod 58:1475–1484

    Article  CAS  Google Scholar 

  6. Bermejo A, Protais P, Blázquez MA, Rao KS, Zafra-Polo MC, Cortes D (1995) Dopaminergic isoquinoline alkaloids from rotos of Xylopia papuana. Nat Prod Res 6:57–62

    CAS  Google Scholar 

  7. Cabedo N, Protais P, Cassels BK, Cortes D (1998) Synthesis and dopamine receptor selectivity of the benzyltetrahydroisoquinoline, (R)-(+)-nor-roefractine. J Nat Prod 61:709–712

    Article  CAS  Google Scholar 

  8. Cabedo N, Andreu I, Ramírez de Arellano MC, Chagraoui A, Serrano A, Bermejo A, Protais P, Cortes D (2001) Enantioselective syntheses of dopaminergic (R)- and (S)-benzyltetrahydroisoquinolines. J Med Chem 44:1794–1801

    Article  CAS  Google Scholar 

  9. Berenguer I, El Aouad N, Andujar S, Romero V, Suvire F, Freret T, Bermejo A, Ivorra MD, Enriz RD, Boulouard M, Cabedo N, Cortes D (2009) Tetrahydroisoquinolines as dopaminergic ligands: 1-butyl-7-chloro-6-hydroxy-tetrahydroisoquinoline, a new compound with antidepressant-like activity in mice. Bioorg Med Chem 17:4968–4980

    Article  CAS  Google Scholar 

  10. El Aouad N, Berenguer I, Romero V, Marín P, Serrano A, Andujar S, Suvire F, Bermejo A, Ivorra MD, Enriz RD, Cabedo N, Cortes D (2009) Structure–activity relationship of dopaminergic halogenated 1-benzyl-tetrahydroisoquinoline derivatives. Eur J Med Chem 44:4616–4621

    Article  Google Scholar 

  11. Andreu I, Cabedo N, Torres G, Chagraoui A, Ramirez de Arellano MC, Gil S, Bermejo A, Valpuesta M, Portais P, Cortes D (2002) Syntheses of dopaminergic 1-cyclohexylmethyl-78-dioxygenated tetrahydroisoquinolines by selective heterogeneous tandem hydrogenation. Tetrahedron 58:10173–10179

    Article  CAS  Google Scholar 

  12. Bermejo A, Andreu I, Suvire F, Léonce S, Caignard DH, Renard P, Pierré A, Enriz RD, Cortes D, Cabedo N (2002) Syntheses and antitumor targeting G1 phase of the cell cycle of benzoyldihydroisoquinoline. J Med Chem 45:5058–5068

    Article  CAS  Google Scholar 

  13. Suvire FD, Andreu I, Bermejo A, Zamora MA, Cortes D, Enriz RD (2003) Conformational study of N-alkyl-benzyltetrahydroisoquinolines alkaloid. J Mol Struct THEOCHEM 666–667:109–116

    Article  Google Scholar 

  14. Suvire FD, Cabedo N, Chagraoui A, Zamora MA, Cortes D, Enriz RD (2003) Molecular recognition and binding mechanism of N-alkyl-benzyltetrahydro-isoquinolines to the D1 dopamine receptor. A computational approach. J Mol Struc THEOCHEM 666–667:455–467

    Article  Google Scholar 

  15. Andreu I, Cortes D, Protais P, Cassels BK, Chagraoui A, Cabedo N (2000) Preparation of dopaminergic N-Alkyl-benzyltetrahydroisoquinolines using a ‘One-Pot’ procedure in acid medium. Bioorg Med Chem 8:889–895

    Article  CAS  Google Scholar 

  16. Doi S, Shirai N, Sato Y (1997) Abnormal products in the Bischler-Napieralski isoquinoline synthesis. J Chem Soc Perkin Trans 1:2217–2221

    Article  Google Scholar 

  17. Andujar SA, Migliore de Angel BM, Charris JE, Israel A, Suárez-Roca H, López SE, Garrido MR, Cabrera EV, Visual G, Rosales C, Suvire FD, Enriz RD, Angel-Guío JE (2008) Synthesis dopaminergic profile and molecular dynamics calculations of N-aralkyl substituted 2-aminoindans. Bioorg Med Chem 16:3233–3244

    Article  CAS  Google Scholar 

  18. Kalani MYS, Vaidehi N, Hall SE, Trabanino RJ, Freddolino PL, Kalani MA, Floriano WB, Wai Tak Kam V, Goddard WA III (2005) The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists. Proc Natl Acad Sci USA 101:3815–3820

    Article  Google Scholar 

  19. Becker OM, Marantz Y, Shacham S, Inbal B, Heifetz A, Kalid O, Bar-Haim S, Warshaviak D, Fichman M, Noiman SG (2004) Protein-coupled receptors: in silico drug discovery in 3D. Proc Natl Acad Sci USA 101:11304–11309

    Article  CAS  Google Scholar 

  20. Micheli F, Bonanomi G, Blaney FE, Braggio S, Capelli AM, Checchia A, Curcuruto O, Damiani F, Di Fabio R, Donati D, Gentile G, Gribble A, Hamprecht D, Tedesco G, Terreni S, Tarsi L, Lightfoot A, Stemp G, MacDonald G, Smith A, Pecoraro M, Petrone M, Perini O, Piner J, Rossi T, Worby A, Pilla M, Valerio E, Griffante C, Mugnaini M, Wood M, Scott C, Andreoli M, Lacroix L, Schwarz A, Gozzi A, Bifone A, Ashby CR Jr, Hagan JJ, Heidbreder C (2007) 124-Triazol-3-yl-thiopropyl-tetrahydrobenzazepines: a series of potent and selective dopamine D3 receptor antagonists. J Med Chem 50:5076–5089

    Article  CAS  Google Scholar 

  21. Ribeiro AA, Horta BAC, de Alencastro RB (2008) MKTOP: a program for automatic construction of molecular topologies. J Braz Chem Soc 19:1433–1435

    Article  CAS  Google Scholar 

  22. Manzour A, Meng F, Meador-Woodruff JH, Taylor LP, Civelli O, Akil H (1992) Site-directed mutagenesis of the human dopamine D2 receptor. Eur J Pharm Mol Pharmacol Sec 227:205–214

    Article  Google Scholar 

  23. Lan H, DuRand CJ, Teeter MM, Neve KA (2006) Structural determinants of pharmacological specificity between D1 and D2 dopamine receptors. Mol Pharmacol 69:185–194

    CAS  Google Scholar 

  24. Berendsen HJC, Van der Spoel D, Van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementations. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  25. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulations and trajectory analysis. J Mol Model 7:306–317

    CAS  Google Scholar 

  26. van Buuren AR, Marrink SJ, Berendsen HJC (1993) A molecular dynamics study of the decane/water interface. J Phys Chem 36:9206–9212

    Article  Google Scholar 

  27. Mark AE, van Helden SP, Smith PE, Janssen LHM, van Gunsteren WF (1994) Convergence properties of free energy calculations. A-cyclodextrin complexes as a case study. J Am Chem Soc 116:6293–6302

    Article  CAS  Google Scholar 

  28. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  29. van Buuren AR, Berendsen HJC (1993) Molecular dynamics simulation of the stability of a 22 residue alpha-helix in water and 30% trifluoroethanol. Biopolymers 33:1159–1166

    Article  Google Scholar 

  30. Liu H, Muller-Plathe F, van Gunsteren WF (1995) A force field for liquid dimethyl sulfoxide and physical properties of liquid dimethyl sulfoxide calculated using molecular dynamics simulation. J Am Chem Soc 117:4363–4366

    Article  CAS  Google Scholar 

  31. Miyamoto S, Kollman PA (1992) SETTLE—an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  32. Berendsen HJC, Postma HJC, Van Gunsteren WF, Hermans WF (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, pp 331–342

    Google Scholar 

  33. Darden T, York D, Pedersen L (1993) Particle mesh Ewald—an N.log(n) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  34. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  35. Luty B, Tironi IG, van Gunsteren WF (1995) Lattice–sum methods for calculating electrostatic interactions in molecular simulations. J Chem Phys 103:3014–3021

    Article  CAS  Google Scholar 

  36. Zimmerman K (1991) All purpose molecular mechanics simulator and energy minimizer. J Comput Chem 12:310–319

    Article  Google Scholar 

  37. Ferguson DM (1995) Parameterization and evaluation of a flexible water model. J Comput Chem 16:501–511

    Article  CAS  Google Scholar 

  38. Berendsen HJC, Postma JPM, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  39. Hess B, Bekker H, Berendsen HJC, Fraaije JG (1997) E.M. LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  40. Kampmann T, Mueller DS, Mark AE, Young PR, Kobe B (2006) The role of histidine residues in low-pH-mediated viral membrane fusion. Structure 14:1481–1487

    Article  CAS  Google Scholar 

  41. Teeter MM, Froimowitz MF, Stec B, Durand CJ (1994) Homology modeling of the dopamine D2 receptor and its testing by docking of agonists and tricyclic antagonists. J Med Chem 37:2874–2888

    Article  CAS  Google Scholar 

  42. Neve KA, Cumbay MG, Thompson KR, Yang R, Buck DC, Watts VJ, Durand CJ, Teeter MM (2001) Modeling and mutational analysis of a putative sodium-binding pocket on the dopamine D2 receptor. Mol Pharmacol 60:373–381

    CAS  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.05. Gaussian Inc, Pittsburgh

    Google Scholar 

  44. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  45. Hjerde E, Dahl SG, Sylte I (2005) Atypical and typical antipsychotic drug interactionswith the dopamine D2 receptor. Eur J Med Chem 40:185–194

    Article  CAS  Google Scholar 

  46. Cho W, Taylor LP, Mansour A, Akil A (1995) Hydrophobic residues of the D2 dopamine receptor are important for binding and signal transduction. J Neurochem 65:2105–2115

    Article  CAS  Google Scholar 

  47. Cox BA, Henningsen RA, Spanoyannis A, Neve RL, Neve KA (1992) Contributions of conserved serine residues to the interactions of ligands with dopamine D2 receptors. J Neurochem 59:627–635

    Article  CAS  Google Scholar 

  48. Wiens BL, Nelson CS, Neve KA (1998) Contribution of serine residues to constitutive and agonist-induced signaling via the D2Sdopamine receptor: evidence for multiple agonist-specific active conformations. Mol Pharmacol 54:435–444

    CAS  Google Scholar 

  49. Wilcox RE, Huang WH, Brusniak MYK, Wilcox DM, Pearlman RS, Teeter MM, Durand CJ, Wiens BL, Neve KA (2000) CoMFA-based prediction of agonist affinities at recombinant wild type versus serine to alanine point mutated D2 dopamine receptors. J Med Chem 43:3005–3019

    Article  CAS  Google Scholar 

  50. Page CS, Bates PA (2008) Can MM-PBSA calculations Predict the specifiicties of protein kinase inhibitors? J Comput Chem 27:1990–2007

    Article  Google Scholar 

  51. Mertz KM (2010) Limits of free energy computation for protein–ligand interactions. J Chem Theor Comput 6:1769–1776

    Article  Google Scholar 

  52. Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11:361–373

    Article  CAS  Google Scholar 

  53. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  54. Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University Press, Oxford

    Google Scholar 

  55. Popelier PLA (1999) Atoms in molecules. An introduction. Pearson, Harlow

    Google Scholar 

Download references

Acknowledgments

Grants from Universidad Nacional de San Luis (UNSL) partially supported this work. This research was also supported by the Spanish “Ministerio de Educación y Ciencia” grant SAF 2007–63142. S.A.A. thanks a postdoctoral fellowship of CONICET-Argentina. R.D.E. is a member of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-Argentina) staff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo D. Enriz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andujar, S., Suvire, F., Berenguer, I. et al. Tetrahydroisoquinolines acting as dopaminergic ligands. A molecular modeling study using MD simulations and QM calculations. J Mol Model 18, 419–431 (2012). https://doi.org/10.1007/s00894-011-1061-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1061-0

Keywords

Navigation