Skip to main content
Log in

Theoretical study of the surface properties of poly(dimethylsiloxane) and poly(tetrafluoroethylene)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulations of poly(dimethylsiloxane) (PDMS) and poly(tetrafluoroethylene) (PTFE) were carried out to determine their surface properties and energies. This study helps to gain better insight into the molecular modeling of PDMS and PTFE, in particular how different approaches affect calculations of surface energy. Current experimental and theoretical data were used to further understand the surface properties of PDMS and PTFE as well as to validate and verify results obtained from the combination of density functional theory (DFT) calculations (including periodic boundary conditions) and MD simulations. Detailed analysis of the structure and electronic properties (by calculation of the projected density of states) of the bulk and surface models of PDMS and PTFE was performed. The sensitivity of the surface energy calculation of these two polymers to the chemistry and model preparation was indicated. The balance between the molecular density, weight (which also reflects bond orientation in the surface region), bond flexibility, and intramolecular interactions including bond stretching was revealed to govern the results obtained. In modeling, the structural organization of polymer near a given surface (types and number of end groups and broken bonds due to application of different cut offs of the periodic structure) also significantly affects the final results. Besides the structural differences, certain simulation parameters, such the DFT functionals and simulation boxes utilized, play an important role in determining surface energy. The models used here were shown to be sufficient due to their good agreement with experimental and other theoretical data related to surface properties and surface energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burness JH, Dillard JG (1994) Langmuir 10:1894–1897

    Article  CAS  Google Scholar 

  2. Kim G, Ajersch F (1994) J Mater Sci 29:676–681

    Article  CAS  Google Scholar 

  3. Voronkov GM, Milileshevich VP, Yuzhelevich YA (1978) The siloxane bond. Consultants Bureau, New York

    Google Scholar 

  4. Frischknecht AL, Curro JG (2003) Macromolecules 36:2122–2129

    Article  CAS  Google Scholar 

  5. Mark JE (1990) Silicon-containing polymers. In: Zeigler JM, Fearon FWG (eds) Silicon-based polymer science; advances in chemistry series. American Chemical Society, Washington, DC, p 47

    Google Scholar 

  6. Zeigher JM, Fearon FWG (1990) Silicon based polymer science: a comprehensive resource, vol 224. ACS, Washington, DC

    Google Scholar 

  7. Kraus G (1965) Rubber Chem Technol 38:1070–1114

    Article  CAS  Google Scholar 

  8. Vondracek AP (1990) Rubber Chem Technol 63:220–231

    Google Scholar 

  9. Dee GT, Sauer BB (1994) Macromolecules 27:6106–6111

    Article  CAS  Google Scholar 

  10. Sauer BB, Dee GT (1994) Macromolecules 27:6112–6116

    Article  CAS  Google Scholar 

  11. Sakka T, Ogata YH (2005) J Fluorine Chem 126:371–375

    Article  CAS  Google Scholar 

  12. Hariharan A, Harris JG (1994) J Chem Phys 101:4156–4165

    Article  CAS  Google Scholar 

  13. Thomas R (1999) In: Hougham G, Johns K, Cassidy PE, Davidson T (eds) Fluoropolymers 2: properties. Plenum, New York

    Google Scholar 

  14. Mansfield KF, Theodorou DN (1991) Macromolecules 24:6283–6294

    Article  CAS  Google Scholar 

  15. Chang J, Han J, Yang L, Jaffe RL, Yoon DY (2001) J Chem Phys 115:2831–2840

    Article  CAS  Google Scholar 

  16. Harris JG (1992) J Phys Chem 96:5077–5086

    Article  CAS  Google Scholar 

  17. Hapke T, Pätzold G, Heermann DW (1998) J Chem Phys 109:10075–10081

    Article  CAS  Google Scholar 

  18. Jang SS, Blanco M, Goddard WA III, Caldwell G, Ross RB (2003) Macromolecules 36:5331–5341

    Article  CAS  Google Scholar 

  19. Watkins EK, Jorgensen WL (2001) J Phys Chem A 105:4118–4125

    Article  CAS  Google Scholar 

  20. Collazo N, Shin S, Rice SA (1992) J Chem Phys 96:4735–4742

    Article  CAS  Google Scholar 

  21. Cui ST, Siepmann JI, Cochran HD, Cummings PT (1998) Fluid Phase Equilib 146:51–61

    Article  CAS  Google Scholar 

  22. Borodin O, Smith GD, Bedrov D (2002) J Phys Chem B 106:9912–9922

    Article  CAS  Google Scholar 

  23. Holt DB, Farmer BL, Macturk KS, Eby RK (1996) Polymer 37:1847–1855

    Article  CAS  Google Scholar 

  24. Lee S, Chang J, Jaffe RL, Yoon DY (2007) Macromolecules 40:7407–7412

    Article  CAS  Google Scholar 

  25. Sun H (1995) Macromolecules 28:701–712

    Article  CAS  Google Scholar 

  26. Smith JS, Borodin O, Smith GD (2004) J Phys Chem B 108:20340–20350

    Article  CAS  Google Scholar 

  27. Striolo A, McCabe C, Cummings PT (2005) J Phys Chem B 109:14300–14307

    Article  CAS  Google Scholar 

  28. Fritz L, Hofmann D (1997) Polymer 38:1035–1045

    Article  CAS  Google Scholar 

  29. Ismail AE, Grest GS, Heine DR, Stevens MJ (2009) Macromolecules 42:3186–3194

    Article  CAS  Google Scholar 

  30. Nath SK, Frischknecht AL, Curro JG, McCoy JD (2005) Macromolecules 38:8562–8573

    Article  CAS  Google Scholar 

  31. Byutner OG, Smith GD (2000) Macromolecules 33:4264–4270

    Article  CAS  Google Scholar 

  32. Macturk KS, Farmer BL, Eby RK (1995) Polym Int 37:157–164

    Article  CAS  Google Scholar 

  33. Bhattacharya S, Datta A, Berg JM, Gangopadhyay S (2005) J Microelectromechanical Systems 14:590–597

    Article  CAS  Google Scholar 

  34. Kroner E, Maboudian R, Arzt E (2010) Adv Eng Mater 12:398–404

    Article  CAS  Google Scholar 

  35. Hooper JB, Bedrov D, Smith GD, Hanson B, Borodin O, Dattelbaum DM, Kober EM (2009) J Chem Phys 130:144904–144911

    Article  Google Scholar 

  36. Choo BK, Song NY, Kim KH, Choi JS, Park KC, Jang J (2008) J Non-Cryst Solids 354:2879–2884

    Article  CAS  Google Scholar 

  37. Voue M, Semal S, De Coninck J (1999) Langmuir 15:7855–7862

    Article  CAS  Google Scholar 

  38. Surface energy data for polydimethylsiloxane (PDMS) http://www.accudynetest.com/polymer_surface_data/polydimethylsiloxane.pdf

  39. Okada O, Oka K, Kuwajima S, Toyoda S, Tanabe K (2000) Comput Theor Polymer Sci 10:371–381

    Article  CAS  Google Scholar 

  40. Henry DJ, Yiapanis G, Evans E, Yarovsky I (2005) J Phys Chem B 109:17224–17231

    Article  CAS  Google Scholar 

  41. Surface energy data for polytetrafluoroethylene (PTFE) http://www.accudynetest.com/polymer_surface_data/ptfe.pdf

  42. Grundke K, Augsburg A (2000) J Adhes Sci Technol 14:765–775

    Article  CAS  Google Scholar 

  43. Szymczyk K, Janczuk B (2007) Langmuir 23:8740–8746

    Article  CAS  Google Scholar 

  44. Clint JH, Wicks AC (2001) Int J Adhes Adhes 21:267–273

    Article  CAS  Google Scholar 

  45. Smith JS, Borodin O, Smith GD, Kober EM (2007) J Polym Sci B Polym Phys 45:1599–1615

    Article  CAS  Google Scholar 

  46. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  47. Kresse G, Hafner J (1993) Phys Rev B 48:13115–13118

    Article  CAS  Google Scholar 

  48. Kresse G, Furthmülleer J (1996) J Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  49. Jones RO, Gunnarsson O (1989) Rev Mod Phys 61:689–746

    Article  CAS  Google Scholar 

  50. Blöchl PE (1994) Phys Rev B 50:17953–17979

    Article  Google Scholar 

  51. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  52. Perdew JP, Zunger A (1981) Phys Rev B 23:548–552

    Article  Google Scholar 

  53. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  54. Kroll P, Hoffmann R (1999) J Am Chem Soc 121:4696–4703

    Article  CAS  Google Scholar 

  55. Ambrosch-Draxl C, Majewski JA, Vogl P, Leising G, Abt R, Aichholzer KD (1995) Synth Metals 69:411–414

    Article  CAS  Google Scholar 

  56. Preat J, Rodríguez-Ropero F, Torras J, Bertran O, Zanuyl D, Alemán C (2010) J Comput Chem 31:1741–1751

    CAS  Google Scholar 

  57. Brocks G, Kelly PJ, Car R (1993) Synth Metals 55–57:4243–4248

    Article  Google Scholar 

  58. Ando S, Ueda M (2002) Synth Metals 129:207–213

    Article  CAS  Google Scholar 

  59. Aouchiche HA, Djennane S, Boucekkine A (2004) Synth Metals 140:127–133

    Article  Google Scholar 

  60. Jørgensen M, Sommer-Larsen P, Norrman K, Krebs FC (2004) Synth Metals 142:121–125

    Article  Google Scholar 

  61. Izumi S, Hara S, Kumagai T, Sakai S (2004) Thin Solid Films 467:253–260

    Article  CAS  Google Scholar 

  62. Nose S (1984) J Chem Phys 81:511–519

    Article  CAS  Google Scholar 

  63. Ferrario M, Ryckaert JP (1985) Mol Phys 54:587–603

    Article  CAS  Google Scholar 

  64. Monkhorst HJ, Pack JD (1976) Phys Rev 13:5188–5192

    Article  Google Scholar 

  65. Scienomics Sarl (2004–2009) Amorphous builder software. http://www.scienomics.com/Products/classical_simulation/Amorphous-builder.php

  66. Weijermars R (1986) Tectonophysics 124:325–258

    Article  Google Scholar 

  67. Silicones and silicon-containing polymers, ABCR-Catalog 1994/1995. http://www.abcr.de

  68. Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Meakin P (2002) Science 296:519–522

    Article  CAS  Google Scholar 

  69. Merkel TC, He Z, Pinnau I, Freeman BD, Meakin P, Hill (2003) Macromolecules 36:6844–6855

    Article  CAS  Google Scholar 

  70. Swart JCW, van Helden P, van Steen E (2007) J Phys Chem C 111:4998–5005

    Article  CAS  Google Scholar 

  71. Hara S, Kumagai T, Izumi S, Sakai S (2004) Structural and mechanical properties of amorphous silicon: Ab initio and classical molecular dynamics study. In: Proceedings of Second Multi-scale Materials Modeling (MMM-II) Conference, 11–15 October 2004, http://www.icf11.com/proceeding/EXTENDED/4753.pdf

  72. Jothimuthu P, Carroll A, Asgar A, Bhagat S, Lin G, Mark JE, Papautsky I (2009) J Micromech Microeng 19:045024–045032

    Article  Google Scholar 

  73. Xua J, Huanga XH, Zhoua NL, Zhanga JS, Baoa JCh, Lu TH, Li C (2004) Mater Lett 58:1938–1942

    Article  Google Scholar 

  74. Shimomura M, Okumoto H, Kaito A, Ueno K (1998) Macromolecules 31(21):7483–7487

    Article  Google Scholar 

  75. Nason TC, Moore JA, Lu TM (1992) Appl Phys Lett 60:1866–1868

    Article  CAS  Google Scholar 

  76. Zamkov MA, Conner RW, Dlott DD (2007) J Phys Chem C 111:10278–10284

    Article  CAS  Google Scholar 

  77. Schrader B (1989) Raman/infrared atlas of organic compounds, 2nd edn. VCH, Weinheim

    Google Scholar 

  78. de Wilde W, de Mey G (1973) Vacuum 24:307–311

    Article  Google Scholar 

  79. FTIR spectra of polymers. http://www.ftir-polymers.com/soon.htm

  80. Shi WX, Guo HX (2010) J Phys Chem B 114:6365–6376

    Article  CAS  Google Scholar 

  81. Li Ch, Choi P (2006) J Phys Chem B 110:6864–6870

    Article  CAS  Google Scholar 

  82. Mattsson AE, Jennison DR (2002) Surf Sci 520:L611–L618

    Article  CAS  Google Scholar 

  83. Mattson AE, Kohn W (2001) J Chem Phys 115:3441–3443

    Article  Google Scholar 

  84. Mattson TR, Mattson AE (2002) Phys Rev B 66:214110–214117

    Article  Google Scholar 

  85. Diebold U, Vogel Koplitz L, Dulub O (2004) Appl Surf Sci 237:336–342

    CAS  Google Scholar 

  86. Wander A, Schedin F, Steadman P, Norris A, McGrath R, Turner TS, Thornton G, Harrison NM (2001) Phys Rev Lett 86:3811–3814

    Article  CAS  Google Scholar 

  87. Wander A, Harrison NM (2000) Surf Sci 457:L342–L346

    Article  CAS  Google Scholar 

  88. Wander A, Harrison NM (2000) Surf Sci 468:L851–L855

    Article  CAS  Google Scholar 

  89. Meyer B, Marx D (2003) Phys Rev B 67(035403):1–11

    Google Scholar 

  90. Lacevic NM, Maxwell RS, Saab A, Gee RH (2006) J Phys Chem B 110:3588–3594

    Article  CAS  Google Scholar 

  91. Castellano M, Conzatti L, Costa G, Falqui L, Turturro A, Valenti B, Negroni F (2005) Polymer 46:695–703

    Article  CAS  Google Scholar 

  92. Sauer BB, Dee GT (1991) Macromolecules 24:2124–2126

    Article  CAS  Google Scholar 

  93. Dee GT, Sauer BB (1993) Macromolecules 26:2771–2778

    Article  CAS  Google Scholar 

  94. Douillard JM, Henry M (2003) J Colloid Interface Sci 263:554–561

    Article  CAS  Google Scholar 

  95. Spencer MJS, Hung A, Snook IK, Yarovsky I (2002) Surf Sci 513:389–398

    Article  CAS  Google Scholar 

  96. Avramov PV, Fedorov DG, Irle S, Kuzubov AA, Morokuma K (2009) J Phys Chem C 113:15964–15968

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by United Technologies Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Leszczynski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michalkova, A., Tulyani, S., Beals, J. et al. Theoretical study of the surface properties of poly(dimethylsiloxane) and poly(tetrafluoroethylene). J Mol Model 18, 239–250 (2012). https://doi.org/10.1007/s00894-011-1058-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1058-8

Keywords

Navigation