Skip to main content
Log in

Theoretical studies and vibrational spectra of 1H-indole-3-acetic acid. Exploratory conformational analysis of dimeric species

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Theoretical studies on 1H-indole-3-acetic acid (IAA) were performed to investigate the conformational properties of dimeric species and vibrational spectra. Experimental infrared spectra at 100 K and 297 K and Raman spectrum at 297 K were analyzed and compared against calculations performed at B3LYP/6-31G** level. A exploratory study of the conformational space of dimeric species was performed. Our analysis showed that dimeric forms predicted theoretically contribute distinctively to the assignments of experimental results. These structures are defined by the orientation of the acetyl moieties with respect to the plane of indole ring. The dimers are formed by two symmetrical IAA monomers (one of them with the acetyl moiety upward oriented, Re-face, and the other isomer having the acetyl moiety downward oriented, Si-face) in tail-to-tail way. The X-ray geometry and FTIR vibrational frequencies were compared with the results of DFT calculations. A conformational equilibrium involving the non-equivalent IAA dimers: CCT-CCT, A+A+T-A-A-T, A+A-T-A-A+T, and A+CT-A-CT was found. The relation of the conformational properties of the IAA molecule with the features of the vibrational spectra was described in detail. The band assignments were discussed as related to the conformations properties. Our analysis shows the significance of the theoretical study of the conformational space of the monomeric molecule in the rationalization of experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kiralj R, Ferreira MMC (2005) Chemometric and molecular modeling study of 1H-Indole-3-acetic acid derivates with auxin activity. Croat Chem Acta 78:541–549

    CAS  Google Scholar 

  2. Woo EJ, Marshall J, Bauly J, Chen JG, Venis M, Napier RM, Pickersgill RW (2002) Crystal structure of auxin-binding protein 1 in complex with auxin. EMBO J 21:2877–2885

    Article  CAS  Google Scholar 

  3. Kiralj R, Ferreira MMC (2003) Combined computational and chemometric study of 1H-Indole-3-acetic acid. Int J Quantum Chem 95:237–251

    Article  CAS  Google Scholar 

  4. Degen A, Bolte M (2001) The twinned crystal structure of 3-indoleylacetic acid. Acta Crystallogr 57:999–1000

    Google Scholar 

  5. Karle IL, Britts K, Gum P (1964) Crystal and molecular structure of 3-indolylacetic acid. Acta Crystallogr 17:496–499

    Article  CAS  Google Scholar 

  6. Chandrasekhar K, Raghunathan S (1982) A reinvestigation of the structure of (3-indolyl)acetic acid. Acta Crystallogr B38:2534–2535

    CAS  Google Scholar 

  7. Pfeiffer D, Kutschabsky L, Leibnitz P, Adam G (1987) Refinement of the structure of 3-indolylacetic acid. Cryst Res Technol 22:K1–K4

    Article  CAS  Google Scholar 

  8. Nigovic B, Antolic S, Kojic-Prodic B, Kiralj R, Magnus V, Salopek-Sondi B (2000) Correlation structural and physico-chemical parameters with the bioactivity of alkylated derivated of indole-3-acetic acid, a phytohormone (auxin). Acta Crystallogr B 56:94–111

    Article  Google Scholar 

  9. Morzyk-Ociepa B, Michalska D, Pietraszko A (2004) Structures and vibrational spectra of indole carboxylic acids. Part I. Indole-2-carboxylic acid. J Mol Struct 688:79–86

    Article  CAS  Google Scholar 

  10. Morzyk-Ociepa B, Michalska D, Pietraszko A (2004) Structures and vibrational spectra of indole carboxylic acids. Part II. 5-Methoxyindole-2-carboxylic acid. J Mol Struct 688:87–94

    Article  CAS  Google Scholar 

  11. Pérez Schmit MC, Jubert AH, Vitale A, Lobayan RM (2010) Electronic structure and conformational properties of 1H-Indole-3-Acetic Acid. J Mol Model, doi:10.1007/s00894-010-0804-7

  12. HyperChem Release 7.5, Hypercube Inc., USA

  13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.02. Gaussian Inc, Pittsburgh

    Google Scholar 

  14. Becke AD (1993) Density-functional thermochemistry III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  15. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  16. Chemistry IUPAC (1976) Rules for the nomenclature of organic chemistry, section E. Stereochemistry. Pure Appl Chem 45:11

    Article  Google Scholar 

  17. Glusker JP, Lewis M, Rossi M (1994) Crystal structure analysis for chemists and biologists. Wiley, New York

    Google Scholar 

  18. National Institute of Standards and Technology; Computational Chemistry Comparison and Benchmark Database, Release 15a; Standard Reference Database Number 101, April 2010; http://srdata.nist.gov/cccbdb/

  19. Colthup NB, Daly LH, Wiberley SE (1964) Introduction to infrared and Raman spectroscopy. Academic Press, New York-London

    Google Scholar 

  20. Nyquist RA (2001) Interpreting infrared, Raman, and nuclear magnetic resonance spectra. Academic Press, USA

    Google Scholar 

  21. Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts, 3rd edn. Wiley, Oxford, England

    Google Scholar 

  22. Smith BC (1999) Infrared spectral interpretation: a systematic approach. CRC Press, USA

    Google Scholar 

  23. Mayo DW, Miller FA, Hannah RW (2003) Course notes on the interpretation of infrared and Raman spectra. Wiley, New York USA

    Google Scholar 

  24. Florio GM, Zwier TS, Myshakin EM, Jordan KD (2003) Theoretical modeling of the OH stretch infrared spectrum of carboxylic acid dimers based on first-principles anharmonic couplings. J Chem Phys 118:1735–1746

    Article  CAS  Google Scholar 

  25. Emmeluth C, Suhm MA, Luckhaus D (2003) A monomers-in-dimers model for carboxylic acid dimers. J Chem Phys 118:2242–2255

    Article  CAS  Google Scholar 

  26. Rao CNR (1963) Chemical Applications of infrared Spectroscopy. Academic, New York

    Google Scholar 

Download references

Acknowledgments

Thanks are due to Agencia de Promoción Científica y Tecnológica Argentina (MINCYT), CONICET and Universidad Nacional de La Plata (Argentina) for financial support. A.H.J. is Member of the Scientific Research Career (CIC, Provincia de Buenos Aires). A.A.V. is a Research Member of the National Research Council of Argentina (CONICET). M.C.P.S. acknowledges a fellowship (IP-PRH N0 54) from Agencia de Promoción Científica y Tecnológica Argentina and Universidad de la Cuenca del Plata (Corrientes, Argentina) and R.M.L. acknowledges Universidad de la Cuenca del Plata for facilities provided during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosana Maria Lobayan.

Additional information

Rosana Maria Lobayan and María Celia Pérez Schmit contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobayan, R.M., Pérez Schmit, M.C., Jubert, A.H. et al. Theoretical studies and vibrational spectra of 1H-indole-3-acetic acid. Exploratory conformational analysis of dimeric species. J Mol Model 17, 1381–1392 (2011). https://doi.org/10.1007/s00894-010-0833-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0833-2

Keywords

Navigation