Skip to main content
Log in

Density functional theory study on (LiNH2)n (n = 1–5) clusters

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Geometrical structures and relative stabilities of (LiNH2)n (n = 1–5) clusters were studied using density functional theory (DFT) at the B3LYP/6-31G* and B3LYP/6-31++G* levels. The electronic structures, vibrational properties, N–H bond dissociation energies (BDE), thermodynamic properties, bond properties and ionization potentials were analyzed for the most stable isomers. The calculated results show that the Li–N and Li–Li bonds can be formed more easily than those of the Li–H or N–H bonds in the clusters, in which NH2 is bound to the framework of Li atomic clusters with fused rings. The average binding energies for each LiNH2 unit increase gradually from 142 kJ mol−1 up to about 180 kJ mol−1 with increasing n. Natural bond orbital (NBO) analysis suggests that the bonds between Li and NH2 are of strong ionicity. Three-center–two-electron Li–N–Li bonding exists in the (LiNH2)2 dimer. The N–H BDE values indicate that the change in N–H BDE values from the monomer a1 to the singlet-state clusters is small. The N–H bonds in singlet state clusters are stable, while the N–H bonds in triplet clusters dissociate easily. A study of their thermodynamic properties suggests that monomer a1 forms clusters (b1, c1, d2 and e1) easily at low temperature, and clusters with fewer numbers of rings tend to transfer to ones with more rings at low temperature. E g, E HOMO and E av decrease gradually, and become constant. Ring-like (LiNH2)3,4 clusters possess higher ionization energy (VIE) and E g, but lower values of E HOMO. Ring-like (LiNH2)3,4 clusters are more stable than other types. A comparison of structures and spectra between clusters and crystal showed that the NH2 moiety in clusters has a structure and spectral features similar to those of the crystal.

(LiNH2) n (n = 1~5) clusters were studied by the density functional method. The average binding energies for each LiNH2 unit gradually increase from 142 kJ/mol up to about 180 kJ/mol with n increasing. The bonds between Li and NH2 are of strong ionicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chen P, Xiong ZT, Luo JZ (2002) Nature 420:302–304

    Article  CAS  Google Scholar 

  2. Leng HY, Ichikawa T, Hino S (2006) J Power Sources 156:166–170

    Article  CAS  Google Scholar 

  3. Hinehliffe A (1977) Chem Phys Lett 45:88–91

    Article  Google Scholar 

  4. Yoshino M, Kcaniya K, Takahashi Y (2005) J Alloys Compd 404–406:185–190

    Article  Google Scholar 

  5. Burk P, Koppel I (1994) Int J Quantum Chem 51:313–318

    Article  CAS  Google Scholar 

  6. Velikokhatnyi OI, Kumta PN (2007) Mater Sci Eng B 140:114–122

    Article  CAS  Google Scholar 

  7. Tsumuraya T, Shishidou T, Oguchi T (2007) J Alloys Compd 446–447:323–327

    Article  Google Scholar 

  8. Chen YH, Kang L, Zhang CR (2008) Acta Phys Sin 57:4174–4181

    CAS  Google Scholar 

  9. Chen YH, Kang L, Zhang CR (2008) Acta Chim Sin 66:2030–2036

    CAS  Google Scholar 

  10. Ge GX, Jing Q, Yang Z (2006) Acta Phys Sin 55:4548–4552

    CAS  Google Scholar 

  11. Jacobs H, Juza R (1972) Z Anorg Allg Chem 391:271–279

    Article  CAS  Google Scholar 

  12. Miwa K, Ohba N, Towata S (2005) Phys Rev B 71:195109

    Article  Google Scholar 

  13. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  14. Becke AD (1992) J Chem Phys 97:9173–9177

    Article  CAS  Google Scholar 

  15. Blanksby SJ, Ellison GB (2003) Acc Chem Res 36:255–263

    Article  CAS  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB et al (2003) Gaussian 03, Revision B.03. Gaussian, Pittsburgh

    Google Scholar 

  17. Douglas BG, Sheridan PM, Jihad IA (2001) J Am Chem Soc 123:5489–5494

    Article  Google Scholar 

  18. Patrick B, Josik P, Georges T (1969) J Mol Struct 4:1–13

    Article  Google Scholar 

  19. Linde G, Juza R (1974) Z Anorg Allg Chem 409:199–214

    Article  CAS  Google Scholar 

  20. Philip AC, Paul AA, James WP (2007) J Alloys Compd 446–447:350–354

    Google Scholar 

  21. Bohger JPO, Eßman RR, Jacobs H (1995) J Mol Struct 348:325–328

    Article  CAS  Google Scholar 

  22. Joseph WN, George CP (1965) Spectrochim Acta 21:877–882

    Article  Google Scholar 

  23. Zhang CJ, Alavi A (2006) J Phys Chem B 110:7139–7143

    Article  CAS  Google Scholar 

  24. Gupta M, Gupta RP (2007) J Alloys Compd 446–447:319–322

    Article  Google Scholar 

  25. Scott AP, Radom L (1996) J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  26. Orimo S, Nakamori Y, Eliseo JR (2007) Chem Rev 107:4111–4132

    Article  CAS  Google Scholar 

  27. Celotta RJ, Bennett RA, Hall JL (1974) J Phys Chem 60:1740–1745

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from the Key Laboratory for Attapulgite Science and Applied Technology of Jiangsu Province and the Natural Science Foundation of Jiangsu Province. S.Q.Z. thanks the Innovation Project for Postgraduates in Universities of Jiangsu Province (Grant No. CX09B093Z) for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Hai Ju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, SQ., Zhou, SM., Hu, T. et al. Density functional theory study on (LiNH2)n (n = 1–5) clusters. J Mol Model 17, 235–242 (2011). https://doi.org/10.1007/s00894-010-0717-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0717-5

Keywords

Navigation