Skip to main content
Log in

Phosphane-stabilized gold clusters: investigation of the stability of [Au13(PMe2Ph)10Cl2]3+

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The phosphane-stabilized gold cluster [Au13(PMe2Ph)10Cl2]3+ was studied using density functional theory. The extraordinary stability of the cluster has been attributed to the stability of the gold core and the protection conferred by ligands. Here, five stability factors of the gold core were explained and verified by investigating the Au 5+13 core in detail. Interactions between the gold core and several PR3 ligands (R = Me, H, I, Br, Cl, F) were investigated according to the different electron donor abilities of each ligand; bonding energy between the ligand and the gold core was found to increase with the electronegativity of the R substituent. Furthermore, two other aspects of the ligands were clarified: how the ligand stabilizes the Au 5+13 core, and which kind of ligand provides the best stabilization for the cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fan H, Yang K, Boye DM, Sigmon T, Malloy KJ, Xu H, López GP, Brinker CJ (2004) Science 304:567–571

    Article  CAS  Google Scholar 

  2. Zheng N, Stucky GD (2006) J Am Chem Soc 128:14278–14280

    Article  CAS  Google Scholar 

  3. Wohltjen H, Snow AW (1998) Anal Chem 70:2856–2859

    Article  CAS  Google Scholar 

  4. Negishi Y, Tsunoyama H, Suzuki M, Kawamura N, Matsushita MM, Maruyama K, Sugawara T, Yokoyama T, Tskuda T (2006) J Am Chem Soc 128:12034–12035

    Article  CAS  Google Scholar 

  5. Shaw CF III (1999) Chem Rev 99:2589–2600

    Article  CAS  Google Scholar 

  6. Bartiett PA, Bauer B, Singer SJ (1978) J Am Chem Soc 100:5085–5089

    Article  Google Scholar 

  7. Woehrle GH, Warner MG, Hutchison JE (2002) J Phys Chem B 106:9979–9981

    Article  CAS  Google Scholar 

  8. Yanagimoto Y, Negishi Y, Fujihara H, Tsukuda T (2006) J Phys Chem B 110:11611–11614

    Article  CAS  Google Scholar 

  9. Briant CE, Theobald BRC, White JW, Bell LK, Mingos DMP, Welch AJ (1981) J Chem Soc Chem Commun 201–202

  10. Zhang HF, Stender M, Zhang R, Wang C, Li J, Wang LS (2004) J Phys Chem B 108:12259–12263

    Article  CAS  Google Scholar 

  11. Teo BK, Shi X, Zhang H (1992) J Am Chem Soc 114:2743–2745

    Article  CAS  Google Scholar 

  12. Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Calis GHM, van der Velden JWA (1981) Chem Ber 114:3634–3642

    Article  CAS  Google Scholar 

  13. Garzón IL, Posada-Amarillas A (1996) Phys Rev B 54:11796–11802

    Article  Google Scholar 

  14. Guliamov O, Frenkel AI, Menard LD, Nuzzo RG, Kronik L (2007) J Am Chem Soc 129:10978–10979

    Article  CAS  Google Scholar 

  15. Larsson JA, Nolan M, Greer JC (2002) J Phys Chem B 106:5931–5937

    Article  CAS  Google Scholar 

  16. Häkkinen H, Barnett RN, Landman U (1999) Phys Rev Lett 82:3264–3267

    Article  Google Scholar 

  17. Zhu MZ, Aikens CM, Hollander FJ, Schatz GC, Jin RC (2008) J Am Chem Soc 130:5883–5885

    Article  CAS  Google Scholar 

  18. Pei Y, Gao Y, Zeng XC (2008) J Am Chem Soc 130:7830–7832

    Article  CAS  Google Scholar 

  19. Iwasa T, Nobusada KJ (2007) Phys Chem C 111:45–49

    Article  CAS  Google Scholar 

  20. Li X, Kiran B, Li J, Zhai HJ, Wang LS (2002) Angew Chem Int Ed 41:4786–4789

    Article  CAS  Google Scholar 

  21. Neukermans S, Janssens E, Chen ZF, Silverans RE, Schleyer PvR, Lievens P (2004) Phys Rev Lett 92:163401–163404

    Article  CAS  Google Scholar 

  22. Cui LF, Huang X, Wang LM, Li J, Wang LS (2007) Angew Chem Int Ed 46:742–745

    Article  CAS  Google Scholar 

  23. Pyykkö P, Runeberg N (2002) Angew Chem Int Ed 41:2174–2176

    Article  Google Scholar 

  24. Kumar V, Kawazoe Y (2002) Appl Phys Lett 80:859–861

    Article  CAS  Google Scholar 

  25. Long J, Qiu YX, Chen XY, Wang SG (2008) J Phys Chem A 112:12646–12652

    CAS  Google Scholar 

  26. Furuse S, Koyasu K, Atobe J, Nakajima A (2008) J Chem Phys 129:064311–064316

    Article  CAS  Google Scholar 

  27. Wang LM, Bulusu S, Zhai HJ, Zeng XC, Wang LS (2007) Angew Chem Int Ed 46:2915–2918

    Article  CAS  Google Scholar 

  28. Walter M, Akola J, Lopez-Acevedo O, Jadzinsky PD, Calero G, Ackerson CJ, Whetten RL, Grönbeck H, Häkkinen H (2008) Proc Natl Acad Sci USA 105:9157–9162

    Article  CAS  Google Scholar 

  29. Hirsch A, Chen ZF, Jiao HJ (2000) Angew Chem Int Ed 39:3915–3917

    Article  CAS  Google Scholar 

  30. Pyykkö P (1997) Chem Rev 97:597–636

    Article  Google Scholar 

  31. Pyykkö P, Tamm T (1998) Organometallics 17:4842–4852

    Article  Google Scholar 

  32. Pyykkö P (1988) Chem Rev 88:563–594

    Article  Google Scholar 

  33. TURBOMOLE, Version 5.10; Quantum Chemistry Group, University of Karlsruhe: Karlsruhe, Germany

  34. Te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, Van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967

    Article  CAS  Google Scholar 

  35. Slater JC (1951) Phys Rev 81:385–390

    Article  CAS  Google Scholar 

  36. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  37. Becke AD (1988) J Chem Phys 88:2547–2553

    Article  CAS  Google Scholar 

  38. Perdew JP (1986) Phys Rev B 34:7406

    Article  Google Scholar 

  39. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Let 77:3865–3868

    Article  CAS  Google Scholar 

  40. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  41. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  42. Andrae D, Häupermann U, Dolg M, Stoll H, Preup H (1990) Theor Chem Acta 77:123–141

    Article  CAS  Google Scholar 

  43. Gunnarsson O, Lundqvist BI, Wilkins JW (1974) Phys Rev B 10:1319–1327

    Article  CAS  Google Scholar 

  44. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  45. Van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597–4610

    Article  Google Scholar 

  46. Rosén A, Lindgren I (1968) Phys Rev 176:114–125

    Article  Google Scholar 

  47. Dewar MJS (1951) Bull Soc Chim Fr 18:C71–C79

    Google Scholar 

  48. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724–728

    Article  CAS  Google Scholar 

  49. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B3. Gaussian Inc, Pittsburgh, PA

    Google Scholar 

  50. Chatt J, Duncanson LA (1953) J Chem Soc 2929–2947

  51. Kitaura K, Morokuma K (1976) Int J Quantum Chem 10:325–340

    Article  CAS  Google Scholar 

  52. Morokuma J (1971) J Chem Phys 55:1236–1244

    Article  CAS  Google Scholar 

  53. Uddin J, Frenking G (2001) J Am Chem Soc 123:1683–1693

    Article  CAS  Google Scholar 

  54. Lein M, Frunzke J, Timoshkin A, Frenking G (2001) Chem Eur J 7:4155–4163

    Article  CAS  Google Scholar 

  55. Brinck T, Murray JS, Politzer P (1993) Int J Quantum Chem 48:73–88

    Article  CAS  Google Scholar 

  56. González-Blanco Ò, Branchadell V (1997) Organometallics 16:5556–5562

    Article  Google Scholar 

  57. Li J, Qiu YX, Wang SG (2009) J Phys Chem A 113:1646–1652

    Article  CAS  Google Scholar 

  58. Bishea GA, Morse MD (1991) J Chem Phys 95:5646–5659

    Article  CAS  Google Scholar 

  59. Wesendrup R, Hunt T, Schwerdtfeger P (2000) J Chem Phys 112:9356–9362

    Article  CAS  Google Scholar 

  60. Huber KP, Herzberge G (1979) Molecular spectra and molecular structure. IV. Constants of diatomic molecules. Van Nostrand, New York

    Google Scholar 

Download references

Acknowledgments

We acknowledge financial support by the National Nature Science Foundation of China (No. 20573074 and 20773086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Guang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Wang, SG. Phosphane-stabilized gold clusters: investigation of the stability of [Au13(PMe2Ph)10Cl2]3+ . J Mol Model 16, 505–512 (2010). https://doi.org/10.1007/s00894-009-0566-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0566-2

Keywords

Navigation