Skip to main content
Log in

CSi2Ga2: a neutral planar tetracoordinate carbon (ptC) building block

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Ever being a large curiosity, the “anti-van’t Hoff/Le Bel” realm that is associated with tetracoordinate or hypercoordinate planar centers has made rapid progress. In particular, it has been disclosed that silicon and gallium can be embedded in various planar species. However, to our best knowledge, assembly of silicon— and gallium-embedded planar units has never been reported, though such assembled species might be used as potential nanoscale devices. Here we report the first attempt on how to design assembled molecular compounds featuring silicon— and gallium-embedded planar tetracoordinate carbon (ptC) units. Taking the special silicon- and gallium-embedded ptC unit CSi2Ga2 as an example, we performed density functional calculations on a series of model compounds [DM(CSi2Ga2)]q+ as well as the saturated compounds (Cl)q[CpM(CSi2Ga2)]q+ (D = CSi2Ga2, Cp(C5H5 ); M = Li, Na, K, Be, Mg, Ca) and the more extended sandwich-like species. For the six metals, CSi2Ga2 can only be assembled in the “hetero-decked sandwich” scheme (e.g., [CpM(CSi2Ga2)]q+) so as to avoid cluster fusion. Interestingly, among all the designed sandwich species, CSi2Ga2 generally prefers to interact with the partner deck at the corner (Ga atoms) or face (CSi2Ga2 planes) sites. Such interaction types serve as an interesting growth pattern that might be applicable to the assembly of Si- and Ga-embedded ptC unit CSi2Ga2 into highly extended sandwich-like complexes. Our results for the first time showed that the Si- and Ga-embedded ptC unit CSi2Ga can act as a new type of building block. The present results are expected to enrich planar tetracoordinate carbon chemistry and metallocenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hoffmann R, Alder RW, Wilcox CF Jr. (1970) J Am Chem Soc 92:4992 doi:10.1021/ja00719a044

    Article  CAS  Google Scholar 

  2. Hoffmann R (1971) Pure Appl Chem 28:181

    Article  CAS  Google Scholar 

  3. For review articles, see (a) Sorger K, Schleyer PvR (1995) J Mol Struct 338:317

    Google Scholar 

  4. Streitwieser A, Bachrach SM, Dorigo A, Schleyer PvR (1995) Lithium Chemistry. In: Sapse A-M, Schleyer PvR (Eds) New York, Wiley, p. 1

  5. Rottger D, Erker G (1997) Angew Chem Int Ed 36:812 doi:10.1002/anie.199708121

    Article  CAS  Google Scholar 

  6. Radom L, Rasmussen DR (1998) Pure Appl Chem 70:1977 doi:10.1351/pac199870101977

    Article  CAS  Google Scholar 

  7. Choukroun R, Cassoux P (1999) Acc Chem Res 32:494 doi:10.1021/ar970304z

    Article  CAS  Google Scholar 

  8. Siebert W, Gunale A (1999) Chem Soc Rev 28:367 doi:10.1039/a801225c

    Article  CAS  Google Scholar 

  9. Boldyrev AI, Wang L-S (2001) J Phys Chem A 105:10759 doi:10.1021/jp0122629

    Article  CAS  Google Scholar 

  10. Minkin RM, Minyaev RH (2002) Russ Chem Rev 71:869 doi:10.1070/RC2002v071n11ABEH000729

    Article  CAS  Google Scholar 

  11. Keese R (2006) Chem Rev 106:4787 doi:10.1021/cr050545h

    Article  CAS  Google Scholar 

  12. Merino G, Méndez-Rojas MA, Vela A, Heine T (2007) J Comput Chem 28:362 doi:10.1002/jcc.20515

    Article  CAS  Google Scholar 

  13. Schleyer PvR, Boldyrev AI (1991) J Chem Soc Chem Commun 1536 doi:10.1039/c39910001536

  14. Boldyrev AI, Schleyer PvR (1991) J Am Chem Soc 113:9045 doi:10.1021/ja00024a003

    Article  CAS  Google Scholar 

  15. Boldyrev AI, Simons J (1998) J Am Chem Soc 120:7967 doi:10.1021/ja981236u

    Article  CAS  Google Scholar 

  16. Ritter SK (2003) Chem Eng News 81(50):23

    Google Scholar 

  17. Li X, Wang L-S, Boldyrev AI, Simons JJ (1999) Am Chem Soc 121(25):6033 doi:10.1021/ja9906204

    Article  CAS  Google Scholar 

  18. Li X, Zhang HF, Wang LS, Geske GD, Boldyrev AI (2000) Angew Chem Int Ed 39:3630 doi:10.1002/1521-3773(20001016)39:20<3630::AID-ANIE3630>3.0.CO;2-R

    Article  CAS  Google Scholar 

  19. Wang LS, Boldyrev AI, Li X, Simons J (2000) J Am Chem Soc 122:7681 doi:10.1021/ja993081b

    Article  CAS  Google Scholar 

  20. Wilson E (2000) Chem Eng News 78(34):8

    Google Scholar 

  21. Geske GD, Boldyrev AI (2002) Inorg Chem 41:2795 doi:10.1021/ic0112241

    Article  CAS  Google Scholar 

  22. Zakrzewski VG, Niessen von W, Boldyrev AI, Schleyer PvR (1993) Chem Phys Lett 174:167

    CAS  Google Scholar 

  23. Boldyrev AI, Li X, Wang LS (2000) Angew Chem Int Ed 39:3307 doi:10.1002/1521-3773(20000915)39:18<3307::AID-ANIE3307>3.0.CO;2-#

    Article  CAS  Google Scholar 

  24. Li X, Zhan HJ, Wang LS (2002) Chem Phys Lett 357:415 doi:10.1016/S0009-2614(02)00488-8

    Article  CAS  Google Scholar 

  25. Havenith RWA, Fowler PW, Steiner E (2002) Chem Eur J 8:1068 doi:10.1002/1521-3765(20020301)8:5<1068::AID-CHEM1068>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  26. Wang Y, Huang YH, Liu RZ (2006) Chem Eur J 12:3610 doi:10.1002/chem.200501320

    Article  CAS  Google Scholar 

  27. Li S-D, Miao C-Q, Ren G-M, Guo J-C (2006) Eur J Inorg Chem 2567–2571 doi:10.1002/ejic.200600118

  28. Yang LM, Ding YH, Sun CC (2006) Chem Phys Chem 7:2478–2482 doi:10.1002/cphc.200600564

    CAS  Google Scholar 

  29. Yang LM, Ding YH, Sun CC (2007) Chem Eur J 13:2546–2555 doi:10.1002/chem.200601223

    Article  CAS  Google Scholar 

  30. Yang LM, Ding YH, Sun CC (2007) J Am Chem Soc 129:658–665 doi:10.1021/ja066217w

    Article  Google Scholar 

  31. Yang LM, Ding YH, Sun CC (2007) J Am Chem Soc 129:1900–1901 doi:10.1021/ja068334x

    Article  CAS  Google Scholar 

  32. We are aware that another possibility is to apply “heteroleptic sandwich”, see Ref: Merino G, Beltran H, Vela A (2006) Inorg Chem 45:1091–1095 doi:10.1021/ic051391r

    Google Scholar 

  33. Also, we note that another possibility is to apply “mixed metallocenes [M(η5-C5Me4R) (η5-P5)]”, see Ref: Padma EJ, Malar (2004) Eur J Inorg Chem 2723–2732 doi:10.1002/ejic.200400058

  34. And “Heteroligands Ferrocene FeCp(η5-E5)” see Ref: Frunzke J, Lein M, Frenking G (2002) Organometallics 21:3351–3359 doi:10.1021/om020397a

  35. Scherer OJ, Bruck T (1987) Angew Chem 99:59; Angew Chem Int Ed 26:59

    Google Scholar 

  36. Collins JB, Dill JD, Jemmis ED, Apeloig Y, Schleyer PvR, Seeger R, Pople JA (1976) J Am Chem Soc 98:5419 doi:10.1021/ja00434a001

    Article  CAS  Google Scholar 

  37. Cotton FA, Millar M (1977) J Am Chem Soc 99:7886 doi:10.1021/ja00466a021

    Article  CAS  Google Scholar 

  38. Erker G, Wicher J, Engel K, Resenfeldt F, Dietrich W, Kruger C (1980) J Am Chem Soc 102:6344 doi:10.1021/ja00540a032

    Article  CAS  Google Scholar 

  39. Keese R (1982) Nachr Chem Tech Lab 30:844

    CAS  Google Scholar 

  40. Stahl D, Maquin F, Gaumann T, Schwarz H, Carrupt P-A, Vogel P (1985) J Am Chem Soc 107:5049 doi:10.1021/ja00304a005

    Article  CAS  Google Scholar 

  41. McGrath MP, Radom L (1992) J Am Chem Soc 114:8531 doi:10.1021/ja00028a048

    Article  Google Scholar 

  42. Luef W, Keese R (1993) Adv Strain Org Chem 3:229

    Google Scholar 

  43. Rottger D, Erker G, Frohlich R, Grehl M, Silverio SJ, Hyla-Kryspin I, Gleiter R (1995) J Am Chem Soc 117:10503 doi:10.1021/ja00147a011

    Article  Google Scholar 

  44. Sorger K, Schleyer PvR, Fleischer R, Stalke DJ (1996) Am Chem Soc 118(29):6924–6933 doi:10.1021/ja9603362

    Article  CAS  Google Scholar 

  45. Sorger K, Schleyer PvR, Stalke D (1996) J Am Chem Soc 118:1086 doi:10.1021/ja9521280

    Article  CAS  Google Scholar 

  46. Hyla-Kryspin I, Gleiter R, Romer M-M, Deveny J, Gunale A, Pritzkow H, Siebert W (1997) Chemistry 2:294

    Google Scholar 

  47. Rasmussen DR, Radom L (1999) Angew Chem Int Ed 38:2875 doi:10.1002/(SICI)1521-3773(19991004)38:19<2875::AID-ANIE2875>3.0.CO;2-D

    Article  Google Scholar 

  48. Wang ZX, Manojkumar TK, Wannere C, Schleyer PvR (2001) Org. Lett. 3:1249 doi:10.1021/ol015573a

    Article  CAS  Google Scholar 

  49. Wang Z-X, Schleyer PvR (2001) J Am Chem Soc 123:994 doi:10.1021/ja0038272

    Article  CAS  Google Scholar 

  50. Sahin Y, Hartmann M, Geiseler G, Schweikart D, Balzereit C, Frenking G, Massa W, Berndt A (2001) Angew Chem Int Ed 40:2662 doi:10.1002/1521-3773(20010716)40:14<2662::AID-ANIE2662>3.0.CO;2-V

    Article  CAS  Google Scholar 

  51. Wang Z-X, Schleyer PvR (2002) J Am Chem Soc 124:11979 doi:10.1021/ja0265310, and references therein

    Article  CAS  Google Scholar 

  52. Merino G, Mendez-Rojas MA, Vela A (2003) J Am Chem Soc 125(20):6026–6027 doi:10.1021/ja034307k

    Article  CAS  Google Scholar 

  53. Merino G, Mendez-Rojas MA, Beltran HI, Corminboeuf C, Heine T, Vela A (2004) J Am Chem Soc 126:16160 doi:10.1021/ja047848y

    Article  CAS  Google Scholar 

  54. Priyakumar UD, Reddy AS, Sastry GN (2004) Tetrahedron Lett 45:2495 doi:10.1016/j.tetlet.2004.02.017

    Article  CAS  Google Scholar 

  55. Priyakumar UD, Sastry GN (2004) Tetrahedron Lett 45:1515 doi:10.1016/j.tetlet.2003.12.019

    Article  CAS  Google Scholar 

  56. Pancharatna PD, Mendez-Rojas MA, Merino G, Vela A, Hoffmann R (2004) J Am Chem Soc 126(46):15309–15315 doi:10.1021/ja046405r

    Article  CAS  Google Scholar 

  57. Li SD, Ren GM, Miao CQ, Jin Z-H (2004) Angew Chem Int Ed 43:1371 doi:10.1002/anie.200353068

    Article  CAS  Google Scholar 

  58. Li SD, Ren GM, Miao CQ (2005) J Phys Chem A 109:259 doi:10.1021/jp040259u

    Article  CAS  Google Scholar 

  59. Esteves PM, Ferreira NBP, Corroa RJ (2005) J Am Chem Soc 127:8680 doi:10.1021/ja042971a

    Article  CAS  Google Scholar 

  60. Perez N, Heine T, Barthel R, Seifert G, Vela A, Mendez-Rojas MA, Merino G (2005) Org Lett 7:1509–1512 doi:10.1021/ol050170m

    Article  CAS  Google Scholar 

  61. Sateesh B, Reddy AS, Sastry GN (2007) J Comp Chem 28:335–343 doi:10.1002/jcc.20552

    Article  CAS  Google Scholar 

  62. Exner K, Schleyer PvR (2000) Science 290:1937 doi:10.1126/science.290.5498.1937

    Article  CAS  Google Scholar 

  63. Wang Z-X, Schleyer PvR (2001) Science 292:2465 doi:10.1126/science.1060000

    Article  CAS  Google Scholar 

  64. Wang Z-X, Schleyer PvR (2002) Angew Chem 114:4256–4259, Angew Chem Int Ed 41:4082–4085 doi:10.1002/1521-3773(20021104)41:21<4082::AID-ANIE4082>3.0.CO;2-Q

  65. Zhai H-J, Kiran B, Li J, Wang L-S (2003) Nat Mater 2:827–833 doi:10.1038/nmat1012

    Article  CAS  Google Scholar 

  66. Zhai HJ, Alexandrova AN, Birch KA, Boldyrev AI, Wang L-S (2003) Angew Chem 115:6186–6190; Angew. Chem. Int. Ed. 2003, 42, 6004–6008 doi:10.1002/anie.200351874

    Google Scholar 

  67. Li S-D, Miao C-Q, Guo J-C, Ren G-M (2004) J Am Chem Soc 126(49):16227 doi:10.1021/ja045303y

    Article  CAS  Google Scholar 

  68. Lein M, Frunzke J, Frenking G (2003) Angew Chem 115:1341–1345. Angew Chem Int Ed 2003, 42, 1303–1306 doi:10.1002/anie.200390336

    Google Scholar 

  69. Li S-D, Ren G-M, Miao C-Q (2004) Inorg Chem 43:6331 doi:10.1021/ic049623u

    Article  Google Scholar 

  70. Li SD, Miao CQ, Ren GM (2004) Eur J Inorg Chem 2232–2234 doi:10.1002/ejic.200400223

  71. Drhardt S, Frenking G, Chen Z-F, Schleyer PvR (2005) Angew Chem Int Ed 44:1078 doi:10.1002/anie.200461970

    Article  Google Scholar 

  72. Li S-D, Guo J-C, Miao C-Q, Ren G-M (2005) Angew Chem Int Ed 44:2158 doi:10.1002/anie.200462476

    Article  CAS  Google Scholar 

  73. Minyaev RM, Gribanova TN (2000) Russ Chem Bull 109:783–796 doi:10.1007/BF02494697

    Article  Google Scholar 

  74. Gribanova TN, Minyaev RM, Minkin VI (2001) Mendeleev Commun 169–170 doi:10.1070/MC2001v011n05ABEH001461

  75. Minyaev RM, Gribanova TN, Starikov AG, Minkin VI (2001) Mendeleev Commun 213–214 doi:10.1070/MC2001v011n06ABEH001496

  76. Minyaev RM, Gribanova TN, Starikov AG, Minkin VI (2002) Dokl Chem 382:41–45 doi:10.1023/A:1014429323457

    Article  CAS  Google Scholar 

  77. Minkin VI, Minyaev RM (2004) Mendeleev Commun 43–46 doi:10.1070/MC2004v014n02ABEH001911

  78. Nayak SK, Rao BK, Jena P, Li X, Wang LS (1999) Chem Phys Lett 301:379 doi:10.1016/S0009-2614(99)00024-X

    Article  CAS  Google Scholar 

  79. Jutzi P, Burdord N (1998) Main Group Metallocenes. In: Togni A, Halterman RL (eds) Metallocenes, Vol. 1. Wiley-VCH, Weinheim, p. 3

  80. Urnezius E, Brennessel WW, Cramer CJ, Ellis JE, Schleyer PvR (2002) Science 295:832 doi:10.1126/science.1067325

    Article  CAS  Google Scholar 

  81. Lein M, Frunzke J, Frenking G (2003) Inorg Chem 42:2504 doi:10.1021/ic020592h

    Article  CAS  Google Scholar 

  82. Frunzke J, Lein M, Frenking G (2002) Organometallics 21:3351 doi:10.1021/om020397a

    Article  CAS  Google Scholar 

  83. Mercero JM, Ugalde JM (2004) J Am Chem Soc 126:3380 doi:10.1021/ja039074b

    Article  CAS  Google Scholar 

  84. Mercero JM, Formoso E, Matxain JM, Eriksson LA, Ugalde JM (2006) Chem Eur J 12:4495 doi:10.1002/chem.200600106

    Article  CAS  Google Scholar 

  85. Mercero JM, Matxain JM, Ugalde JM (2004) Angew Chem Int Ed 43:5485 doi:10.1002/anie.200460498

    Article  CAS  Google Scholar 

  86. Cheng LP, Li QS (2003) J Phys Chem A 107:2882 doi:10.1021/jp027350n

    Article  Google Scholar 

  87. Cheng LP, Li QS (2005) J Phys Chem A 109:3182 doi:10.1021/jp045348l

    Article  CAS  Google Scholar 

  88. Guan J, Li QS (2005) J Phys Chem A 109:9875 doi:10.1021/jp0525944

    Article  CAS  Google Scholar 

  89. Becke AD (1993) J Chem Phys 98:5648 doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  90. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785 doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  91. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PvR (1983) J Comput Chem 4:294 doi:10.1002/jcc.540040303

    Article  CAS  Google Scholar 

  92. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265 doi:10.1063/1.447079

    Article  CAS  Google Scholar 

  93. Gaussian03 (RevisionA.1) (2003) Frisch, M. J. et.al. Gaussian, Inc., Pittsburgh, PA. (Full citations see Supporting Information)

  94. MO pictures were made with MOLDEN3.4 program. G. Schaftenaar, MOLDEN3.4, CAOS/CAMM Center, The Netherlands, 1998

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 20103003, 20573046, 20773054), Doctor Foundation by the Ministry of Education (20070183028), Excellent Young Teacher Foundation of Ministry of Education of China, Excellent Young People Foundation of Jilin Province (20050103), and Program for New Century Excellent Talents in University (NCET).

Supporting information available

Supporting information for this article is available free of charge via the Internet at http://www.elsevier.org.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-hong Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Lm., Li, Xp., Ding, Yh. et al. CSi2Ga2: a neutral planar tetracoordinate carbon (ptC) building block. J Mol Model 15, 97–104 (2009). https://doi.org/10.1007/s00894-008-0362-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0362-4

Keywords

Navigation