Skip to main content
Log in

Design of Benzene-1,2-diamines as selective inducible nitric oxide synthase inhibitors: a combined de novo design and docking analysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Selective inhibition of inducible nitric oxide synthases (iNOS) has been a challenging problem for researchers pursuing work in finding methods to treat inflammatory disorders, shock, etc. Though many inhibitors have been studied to date, all are associated with selectivity or potency problems. Additionally, most of the reported compounds have several similarities and fewer number of novel structures are being tried. There is an increasing need to design novel molecules for this target. In this work, de novo design using LUDI, combined with docking analysis using FlexX has been employed in an attempt to identify novel scaffolds. Benzene-1,2-diamines were identified which could mimic the interactions of the substrate analogs and other inhibitors. Comparative docking scores in each of the isoforms of nitric oxide synthase were employed to recognize hits for iNOS selectivity.

Figure shows the docked poses of the ligand M226 along with that of the reference GW274150. (FlexX analysis)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kerwin Jr JF, Lancaster JR, Feldman PL (1995) J Med Chem 38:4343–4362

    Article  CAS  Google Scholar 

  2. Hansen DW, Peterson KB, Trivedi M, Kramer SW, Webber RK, Tjoeng FS, Moore WM, Jerome GM, Kornmeier CM, Manning PT, Connor JR, Misko TP, Currie MG, Pitzele BS (1998) J Med Chem 41:1361–1366

    Article  CAS  Google Scholar 

  3. Marletta MA (1994) J Med Chem 37:1899–1907

    Article  CAS  Google Scholar 

  4. Knowles RG, Moncada S (1994) Biochem J 298:249–258

    CAS  Google Scholar 

  5. Crane BR, Arvai AS, Ghosh DK, Wu C, Getzoff ED, Stuehr DJ, Tainer JA (1998) Science 279:2121–2126

    Article  CAS  Google Scholar 

  6. Crane BR, Arvai AS, Gachhui R, Wu C, Ghosh DK, Getzoff ED, Stuehr DJ, Tainer JA (1997) Science 278:425–431

    Article  CAS  Google Scholar 

  7. Ji H, Li H, Flinspach M, Poulos TL, Silverman RB (2003) J Med Chem 46:5700–5711

    Article  CAS  Google Scholar 

  8. Li H, Poulos TL (2005) J Inorg Biochem 99:293–305

    Article  CAS  Google Scholar 

  9. Fischmann TO, Hruza A, Niu XD, Fossetta JD, Lunn CA, Dolphin E, Prongay AJ, Reichert P, Lundell DJ, Narula SK, Weber PC (1999) Nat Struct Biol 6:233–242

    Article  CAS  Google Scholar 

  10. Li H, Raman CS, Glaser CB, Blasko E, Young TA, Parkinson JF, Whitlow M, Poulos TL (1999) J Biol Chem 274:21276–21284

    Article  CAS  Google Scholar 

  11. Fedorov R, Vasan R, Ghosh DK, Schlichting I (2004) Proc Natl Acad Sci USA 101:5892–5897

    Article  CAS  Google Scholar 

  12. Alderton WK, Cooper CE, Knowles RG (2001) Biochem J 357:593–615

    Article  CAS  Google Scholar 

  13. Olken NM, Marletta MA (1993) Biochemistry 32:9677–9685

    Article  CAS  Google Scholar 

  14. Furfine ES, Harmon MF, Paith JE, Garvey EP (1993) Biochemistry 32:8512–8517

    Article  CAS  Google Scholar 

  15. McCall TB, Feelisch M, Palmer RM, Moncada S (1991) Br J Pharmacol 102:234–238

    CAS  Google Scholar 

  16. Babu BR, Griffith OW (1998) J Biol Chem 273:8882–8889

    Article  CAS  Google Scholar 

  17. Narayanan K, Griffith OW (1994) J Med Chem 37:885–887

    Article  CAS  Google Scholar 

  18. Moore WM, Webber RK, Jerome GM, Tjoeng FS, Misko TP, Currie MG (1994) J Med Chem 37:3886–3888

    Article  CAS  Google Scholar 

  19. Misko TP, Moore WM, Kasten TP, Nickols GA, Corbett JA, Tilton RG, McDaniel ML, Williamson JR, Currie MG (1993) Eur J Pharmacol 233:119–125

    Article  CAS  Google Scholar 

  20. Garvey EP, Oplinger JA, Tanoury GJ, Sherman PA, Fowler M, Marshall S, Harmon MF, Paith JE, Furfine ES (1994) J Biol Chem 269:26669–26676

    CAS  Google Scholar 

  21. Southan GJ, Szabo C, Thiemermann C (1995) Br J Pharmacol 114:510–516

    CAS  Google Scholar 

  22. Moore WM, Webber RK, Fok KF, Jerome GM, Connor JR, Manning PT, Wyatt PS, Misko TP, Tjoeng FS, Currie MG (1996) J Med Chem 39:669–672

    Article  CAS  Google Scholar 

  23. Hagen TJ, Bergmanis AA, Kramer SW, Fok KF, Schmelzer AE, Pitzele BS, Swenton L, Jerome GM, Kornmeier CM, Moore WM, Branson LF, Connor JR, Manning PT, Currie MG, Hallinan EA (1998) J Med Chem 41:3675–3683

    Article  CAS  Google Scholar 

  24. Beaton H, Boughton-Smith N, Hamley P, Ghelani A, Nicholls DJ, Tinker AC, Wallace AV (2001) Bioorg Med Chem Lett 11:1027–1030

    Article  CAS  Google Scholar 

  25. Beaton H, Hamley P, Nicholls DJ, Tinker AC, Wallace AV (2001) Bioorg Med Chem Lett 11:1023–1026

    Article  CAS  Google Scholar 

  26. Tinker AC, Beaton HG, Boughton-Smith N, Cook TR, Cooper SL, Fraser-Rae L, Hallam K, Hamley P, McInally T, Nicholls DJ, Pimm AD, Wallace AV (2003) J Med Chem 46:913–916

    Article  CAS  Google Scholar 

  27. Connolly S, Aberg A, Arvai A, Beaton HG, Cheshire DR, Cook AR, Cooper S, Cox D, Hamley P, Mallinder P, Millichip I, Nicholls DJ, Rosenfeld RJ, St-Gallay SA, Tainer J, Tinker AC, Wallace AV (2004) J Med Chem 47:3320–3323

    Article  CAS  Google Scholar 

  28. Kawanaka Y, Kobayashi K, Kusuda S, Tatsumi T, Murota M, Nishiyama T, Hisaichi K, Fujii A, Hirai K, Naka M (2003) Bioorg Med Chem 11:1723–1743

    Article  CAS  Google Scholar 

  29. Kawanaka Y, Kobayashi K, Kusuda S, Tatsumi T, Murota M, Nishiyama T, Hisaichi K, Fujii A, Hirai K, Nishizaki M, Naka M, Komeno M, Nakai H, Toda M (2003) Bioorg Med Chem 11:689–702

    Article  CAS  Google Scholar 

  30. Ueda S, Terauchi H, Kawasaki M, Yano A, Ido M (2004) Chem Pharm Bull 52:634–637

    Article  CAS  Google Scholar 

  31. Ueda S, Terauchi H, Yano A, Ido M, Matsumoto M, Kawasaki M (2004) Bioorg Med Chem Lett 14:313–316

    Article  CAS  Google Scholar 

  32. Ueda S, Terauchi H, Yano A, Matsumoto M, Kubo T, Kyoya Y, Suzuki K, Ido M, Kawasaki M (2004) Bioorg Med Chem 12:4101–4116

    Article  CAS  Google Scholar 

  33. Ueda S, Terauchi H, Suzuki K, Yano A, Matsumoto M, Kubo T, Minato H, Arai YT, Suji J, Watanabe N (2005) Bioorg Med Chem Lett 15:1361–1366

    Article  CAS  Google Scholar 

  34. Strub A, Ulrich WR, Hesslinger C, Eltze M, Fuchss T, Strassner J, Strand S, Lehner MD, Boer R (2006) Mol Pharmacol 69:328–337

    CAS  Google Scholar 

  35. Naka M, Nanbu T, Kobayashi K, Kamanaka Y, Komeno M, Yanase R, Fukutomi T, Fujimura S, Seo HG, Fujiwara N, Ohuchida S, Suzuki K, Kondo K, Taniguchi N (2000) Biochem Biophys Res Commun 270:663–667

    Article  CAS  Google Scholar 

  36. Young RJ, Beams RM, Carter K, Clark HA, Coe DM, Chambers CL, Davies PI, Dawson J, Drysdale MJ, Franzman KW, French C, Hodgson ST, Hodson HF, Kleanthous S, Rider P, Sanders D, Sawyer DA, Scott KJ, Shearer BG, Stocker R, Smith S, Tackley MC, Knowles RG (2000) Bioorg Med Chem Lett 10:597–600

    Article  CAS  Google Scholar 

  37. Salerno L, Sorrenti V, Di Giacomo C, Romeo G, Siracusa MA (2002) Curr Pharm Des 8:177–200

    Article  CAS  Google Scholar 

  38. Babu BR, Frey C, Griffith OW (1999) J Biol Chem 274:25218–25226

    Article  CAS  Google Scholar 

  39. Aparna V, Desiraju G.R, Gopalakrishnan B (2007) J Mol Graph Model 26:457–470

    Article  CAS  Google Scholar 

  40. Haitao Ji, Gomez-Vidal, Jose A, Martasek P, Roman LJ, Silverman, RB (2006) J Med Chem 49:6254–6263

    Article  Google Scholar 

  41. Seo J, Igarashi J, Li H, Martasek P, Roman LJ, Poulos TL, Silverman RB (2007) J Med Chem 50:2089–2099

    Article  CAS  Google Scholar 

  42. David DD, Adler M, Arnaiz D, Eagen K, Erickson S, Guilford W, Kenrick, M, Morrissey MM, Ohlmeyer M, Pan G, Paradkar VM, Parkinson J, Polokoff M, Saionz K, Santos C, Subramanyam B, Vergona R, Wei RG, Whitlow M, Ye B, Zhao Z, Devlin JJ, Phillips G (2007) J Med Chem 50:1146–1157

    Article  Google Scholar 

  43. Bohm HJ (1994) J Comput Aided Mol Des 8:243–256

    Article  CAS  Google Scholar 

  44. Rarey M, Kramer B, Lengauer T, Klebe G (1996) J Mol Biol 261:470–489

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasad V. Bharatam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francis, S.M., Mittal, A., Sharma, M. et al. Design of Benzene-1,2-diamines as selective inducible nitric oxide synthase inhibitors: a combined de novo design and docking analysis. J Mol Model 14, 215–224 (2008). https://doi.org/10.1007/s00894-007-0263-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0263-y

Keywords

Navigation