Skip to main content
Log in

Molecular dynamics studies of the Nafion®, Dow® and Aciplex® fuel-cell polymer membrane systems

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The Nafion, Dow and Aciplex systems – where the prime differences lies in the side-chain length – have been studied by molecular dynamics (MD) simulation under standard pressure and temperature conditions for two different levels of hydration: 5 and 15 water molecules per (H)SO3 end-group. Structural features such as water clustering, water-channel dimensions and topology, and the dynamics of the hydronium ions and water molecules have all been analysed in relation to the dynamical properties of the polymer backbone and side-chains. It is generally found that mobility is promoted by a high water content, with the side-chains participating actively in the H3O+/H2O transport mechanism. Nafion, whose side-chain length is intermediate of the three polymers studied, is found to have the most mobile polymer side-chains at the higher level of hydration, suggesting that there could be an optimal side-chain length in these systems. There are also some indications that the water-channel network connectivity is optimal for high water-content Nafion system, and that this could explain why Nafion appears to exhibit the most favourable overall hydronium/water mobility.

The simulation box for Aciplex with 5 water molecules per sulphonate end-group (yellow spheres). The polymer backbone is black; while side-chains are brown. The water-channel iso-surfaces are represented as blue clouds

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Larminie J, Dicks A (2003) Fuel cell systems explained. Wiley, Chichester, UK

    Google Scholar 

  2. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Chem Rev 104:4587–4612

    Article  CAS  Google Scholar 

  3. Smitha B, Sridher S, Khan AA (2005) J Memb Sci 259:10–26

    Article  CAS  Google Scholar 

  4. Mauritz KA, Moore RB (2004) Chem Rev 104:4535–4586

    Article  CAS  Google Scholar 

  5. Schuster MFH, Meyer WH, Schuster M, Kreuer KD (2004) Chem Mater 16:329–337

    Article  CAS  Google Scholar 

  6. Tsuzuki S, Uchimaru T, Mikami M, Urata S (2004) J Chem Phys 121:9917–9924

    Article  CAS  Google Scholar 

  7. Urata S, Tsuzuki S, Mikami M, Takada A, Uchimaru T, Sekiya A (2002) J Comput Chem 23:1472–1479

    Article  CAS  Google Scholar 

  8. Urata S, Irisawa J, Takada A, Tsuzuki S, Shinoda W, Mikami M (2005) J Fluorine Chem 126:1312–1320

    Article  CAS  Google Scholar 

  9. Urata S, Irisawa J, Takada A, Shinoda W, Tsuzuki S, Mikami M (2005) J Phys Chem B 109:17274–17280

    Article  CAS  Google Scholar 

  10. Urata S, Irisawa J, Takada A, Shinoda W, Tsuzuki S, Mikami M (2005) J Phys Chem B 109:4269–4278

    Article  CAS  Google Scholar 

  11. Urata S, Irisawa J, Takada A, Tsuzuki S, Shinod W, Mikami M (2004) Phys Chem Chem Phys 6:3325–3332

    Article  CAS  Google Scholar 

  12. Goddard WA III, Çağin T, Blanco M, Vaidehi N, Dasgupta S, Floriano W, Belmares M, Kua J, Zamanakos G, Kashihara S, Iotov M, Gao G (2001) Comp and Theor Polym Sci 11:329–343

    Article  CAS  Google Scholar 

  13. Deng W-Q, Molinero V, Goddard WA III (2004) J Am Chem Soc 126:15644–15645

    Article  CAS  Google Scholar 

  14. Mayo SL, Olafson BD, Goddard WA III (1990) J Phys Chem 94:8897–8909

    Article  CAS  Google Scholar 

  15. Jang SS, Molinero V, Çaðin T, Goddard WA III (2004) J Phys Chem B 108:3149–3157

    Article  CAS  Google Scholar 

  16. Jang SS, Lin S-T, Çaðin T, Molinero V, Goddard III WA (2005) J Phys Chem B 109:10154–10167

    Article  CAS  Google Scholar 

  17. Jang SS, Blanco M, Goddard WA III, Caldwell G, Ross RB (2003) Macromolecules 36:5331–5341

    Article  CAS  Google Scholar 

  18. Walbran S, Kornyshev AA (2001) J Chem Phys 114:10039–10048

    Article  CAS  Google Scholar 

  19. Spohr E, Commer P, Kornyshev AA (2002) J Phys Chem B 106:10560–10569

    Article  CAS  Google Scholar 

  20. Petersen MK, Wang F, Blake NP, Metiu H, Voth GA (2005) J Phys Chem B 109:3727–3730

    Article  CAS  Google Scholar 

  21. Petersen MK, Voth GA (2006) J Phys Chem B 110:18594–18600

    Article  CAS  Google Scholar 

  22. Seeliger D, Hartnig C, Spohr E (2005) Electrochim Acta 50:4234–4240

    Article  CAS  Google Scholar 

  23. Dokmaisrijan S, Spohr E (2006) J Mol Liq 129:92–100

    Article  CAS  Google Scholar 

  24. Hektor A, Klintenberg M, Aabloo A, Thomas JO (2003) J Mater Chem 13:214–218

    Article  CAS  Google Scholar 

  25. Karo J, Aabloo A, Thomas JO (2005) Solid State Ionics 176:3041–3044

    Article  CAS  Google Scholar 

  26. Brandell D (2006) Presentation at the International Symposium on Polymer Electrolytes 10 (ISPE-10), Foz do Iguaçu, Brazil, 15–19 October

  27. Tant MR, Mauritz KA, Wilkes GL (1997) Ionomers. Blackie Academic & Professional, London

    Google Scholar 

  28. Levitt M, Hirshberg M, Sharon R, Laidig KE, Daggett V (1997) J Phys Chem B 101:5051–5061

    Article  CAS  Google Scholar 

  29. Brandell D, Ainla A, Liivat A, Aabloo A (2006) Molecular Dynamics Simulations of Li- and Na-Nafion Membranes. In: Proceedings of SPIE – The International Society for Optical Engineering, vol. 6168

  30. Soolo E, Karo J, Kasemägi H, Kruusmaa M, Aabloo A (2006) Application of the Monte Carlo method for creation of initial models of EAP molecules for Molecular Dynamics simulation. In: Proc SPIE – The International Society for Optical Engineering, vol. 6168

  31. Smith W, Forester T, The DL_POLY Project, Daresbury Laboratory, Daresbury, Warrington WA44 AD, England

  32. Gierke TD (1977) J Electrochem Soc 134:319c

    Google Scholar 

  33. Gebel G (2000) Polymer 41:5829–5838

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants from The Swedish Research Council (VR); DB gratefully acknowledges a stipend from Fred Anderssons Stiftelse; DB and AL would also like to thank the Nordic Fuel Cell Network for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Brandell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandell, D., Karo, J., Liivat, A. et al. Molecular dynamics studies of the Nafion®, Dow® and Aciplex® fuel-cell polymer membrane systems. J Mol Model 13, 1039–1046 (2007). https://doi.org/10.1007/s00894-007-0230-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0230-7

Keywords

Navigation