Skip to main content
Log in

Pt-bridges in various single-strand and double-helix DNA sequences. DFT and MP2 study of the cisplatin coordination with guanine, adenine, and cytosine

  • Original paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this study, various platinum cross-links in DNA bases were explored. Some of these structures occur in many cis/trans-platinated double-helixes or single-stranded adducts. However, in the models studied, no steric hindrance from sugar-phosphate backbone or other surroundings is considered. Such restrictions can change the bonding picture partially but hopefully the basic energy characteristics will not be changed substantially. The optimization of the structures explored was performed at the DFT level with the B3LYP functional and the 6-31G(d) basis set. Perturbation theory at the MP2/6-31++G(2df,2pd) level was used for the single-point energy and 6-31+G(d) basis set for the electron-property analyses. It was found that the most stable structures are the diguanine complexes followed by guanine-cytosine Pt-cross-links, ca 5 kcal mol−1 less stable. The adenine-containing complexes are about 15 kcal mol−1 below the stability of diguanine structures. This stability order was also confirmed by the BE of Pt–N bonds. For a detailed view on dative and electrostatic contributions to Pt–N bonds, Natural Population Analysis, determination of electrostatic potentials, and canonical Molecular Orbitals description of the examined systems were used.

Map of electrostatic potential of the Pt–N7(G),N3(C) (HH) complex projected to 0.001 isodensity surface

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. 1 hartree = 27.211 eV = 627.51 kcal mol-1 = 2625.5 kJ mol-1

References

  1. Rosenberg B, van Camp L, Trosko JL, Mansour VH (1969) Nature 222:385–391

    Article  CAS  Google Scholar 

  2. Beljanski V, Villanueva JM, Doetsch PW, Natile G, Marzilli LG (2005) J Am Chem Soc 127:15833–15842

    Article  CAS  Google Scholar 

  3. Najajreh Y, Kasparkova J, Marini V, Gibson D, Brabec V (2005) J Biol Inorg Chem 10:722–731

    Article  CAS  Google Scholar 

  4. Marini V, Christofis P, Novakova O, Kasparkova J, Farrell N, Brabec V (2005) Nucleic Acids Res 33:5819–5828

    Article  CAS  Google Scholar 

  5. Bhattacharyya D, Marzilli PA, Marzilli LG (2005) Inorg Chem 44:7644–7651

    Article  CAS  Google Scholar 

  6. Brabec V, Kasparkova J (2005) Drug Resistance Updates 8:131–146

    Article  CAS  Google Scholar 

  7. Malina J, Voitiskova M, Brabec V, Diakos CI, Hambley TW (2005) Biochem Biophys Res Commun 332:1034–1041

    Article  CAS  Google Scholar 

  8. Bivian-Castro EY, Roitzsch M, Gupta D, Lippert B (2005) Inorganica Chimica Acta 358:2395–2402

    Article  CAS  Google Scholar 

  9. Barnes KR, Lippard SJ (2004) Metal complexes in tumor diagnosis and as anticancer agents. In: Metal ions in biological systems, vol 42. pp 143–177

  10. Carlone M, Marzilli LG, Natile G (2005) Europ J Inorg Chem 1264–1273

  11. Kaim W, Schwederski B (1994) Bioinorganic chemistry: inorganic elements in the chemistry of life. Wiley, Chichester, England

    Google Scholar 

  12. Takahara PM, Rosenzweig AC, Frederick CA, Lippard SJ (1995) Nature 377:649–655

    Article  CAS  Google Scholar 

  13. Takahara PM, Frederick CA, Lippard SJ (1996) J Am Chem Soc 118:12309–12321

    Article  CAS  Google Scholar 

  14. Yang D, van Boom SSGE, Reedijk J, van Boom JH, Wang AH-J (1995) Biochemistry 34:12912–12921

    Article  CAS  Google Scholar 

  15. Gelasco A, Lippard SJ (1998) Biochemistry 37:9230–9238

    Article  CAS  Google Scholar 

  16. Dunham SU, Dunham SU, Turner CJ, Lippard SJ (1998) J Am Chem Soc 120:5395–5403

    Article  CAS  Google Scholar 

  17. Wing RM, Pjura P, Drew HR, Dickerson RE (1984) EMBO J 3:1201–1212

    CAS  Google Scholar 

  18. Lilley DMJ (1996) J Biol Inorg Chem 1:189–191

    Article  CAS  Google Scholar 

  19. Coste F, Malinge JM, Serre L, Shepard W, Roth M, Leng M, Zelwer C (1999) Nucleic Acids Res 27:1837–1845

    Article  CAS  Google Scholar 

  20. Spingler B, Whittington DA, Lippard SJ (2001) Inorg Chem 40:5596–5602

    Article  CAS  Google Scholar 

  21. Silverman AP, Bu W, Cohen SM, Lippard SJ (2002) J Biol Chem 277:49743–49754

    Article  CAS  Google Scholar 

  22. Parkinson GN, Arvanitis GM, Lessinger L, Ginell SL, Jones R, Gaffney B, Berman HM (1995) Biochemistry 34:15487–15495

    Article  CAS  Google Scholar 

  23. Ohndorf U-M, Rould MA, He Q, Pabo CO, Lippard SJ (1999) Nature 399:708–712

    Article  CAS  Google Scholar 

  24. Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467–2498

    Article  CAS  Google Scholar 

  25. Kašparková J, Mackay FS, Brabec V, Sadler PJ (2003) J Biol Inorg Chem 8:741–745

    Article  Google Scholar 

  26. Choi S, Delaney S, Orbai L, Padgett EJ, Hakemian AS (2001) Inorg Chem 40:5481–5482

    Article  CAS  Google Scholar 

  27. Junicke H, Bruhn C, Kluge R, Serianni AS, Steinborn D (1999) J Am Chem Soc 121:6232–6241

    Article  CAS  Google Scholar 

  28. Song R, Kim KM, Lee SS, Sohn YS (2000) Inorg Chem 39:3567–3571

    Article  CAS  Google Scholar 

  29. Watanabe M, Kai M, Asanuma S, Yoshikane M, Horiuchi A, Ogasawara A, Watanabe T, Mikami T, Matsumoto T (2001) Inorg Chem 40:1496–1500

    Article  Google Scholar 

  30. Kelland LR, Jones MM, Abel G, Harrap KR (1992) Cancer Chemother Pharmacol 30:43–50

    Article  CAS  Google Scholar 

  31. Wong E, Giandomenico CM (1999) Chem Rev 99:2451–2466

    Article  CAS  Google Scholar 

  32. Reedijk J (1996) Chem Commun 7:801–806

    Article  Google Scholar 

  33. Reedijk J (1999) Chem Rev 99:2499–2510

    Article  CAS  Google Scholar 

  34. Brabec V, Neplechova K, Kasparkova J, Farell N (2000) J Biol Inorg Chem 5:364–368

    Article  CAS  Google Scholar 

  35. Sigel H, Song B, Oswald G, Lippert B (1998) Chem Eur J 4:1053–1060

    Article  CAS  Google Scholar 

  36. Williams KM, Scarcia T, Natile G, Marzilli LG (2001) Inorg Chem 40:445–454

    Article  CAS  Google Scholar 

  37. Paquet F, Perez C, Leng M, Lancelot G, Malinge JM (1996) J Biomol Struct Dyn 14:67–77

    CAS  Google Scholar 

  38. Huang HF, Zhu LM, Reid BR, Drobny GP, Hopkins PB (1995) Science 270:1842–1845

    Article  CAS  Google Scholar 

  39. Payet D, Gaucheron F, Sip M, Leng M (1993) Nucleic Acids Res 21:5846–5859

    Article  CAS  Google Scholar 

  40. Bancroft DP, Lepre CA, Lippard SJ (1990) J Am Chem Soc 112:6860–6867

    Article  CAS  Google Scholar 

  41. Monjardet-Bas V, Chottard J-C, Kozelka J (2002) Chem Eur J 1144–1150

  42. Perez C, Leng M, Malinge JM (1997) Nucleic Acids Res 25:896–903

    Article  CAS  Google Scholar 

  43. Reedijk J (1992) Inorg Chim Acta 198:873–876

    Article  Google Scholar 

  44. Brabec V, Leng M (1993) Proc Natl Acad Sci USA 90:5345–5346

    Article  CAS  Google Scholar 

  45. Paquet F, Boudvillain M, Lancelot G, Leng M (1999) Nucleic Acids Res 27:4261–4268

    Article  CAS  Google Scholar 

  46. Comess KM, Costello CE, Lippard SJ (1990) Biochemistry 29:2102–2114

    Article  CAS  Google Scholar 

  47. Dalbies R, Boudvillain M, Leng M (1995) Nucleic Acids Res 23:949–957

    Article  CAS  Google Scholar 

  48. Boudvillain M, Dalbies R, Aussourd C, Leng M (1995) Nucleic Acids Res 23:2381–2389

    Article  CAS  Google Scholar 

  49. Boudvillain M, Guerin M, Dalbies R, Saison-Behmoaras T, Leng M (1997) Biochemistry 36:2925–2936

    Article  CAS  Google Scholar 

  50. Lippert B (1999) Cisplatin: chemistry and biochemistry of a leading anticancer drug. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  51. Martin RB (1983) In: Lippard SJ (ed) Platinum, gold and other metal chemoterapeutic agents, vol 209. ACS Symposium Series, Washington District of Columbia, p 859

  52. Arpalahti J, Klika KD, Sillanpaa R, Kivekas R (1998) J Chem Soc, Dalton Trans 1397–1402

  53. Carloni P, Sprik M, Andreoni W (2000) J Phys Chem B 104:823–835

    Article  CAS  Google Scholar 

  54. Baik M-H, Friesner RA, Lippard SJ (2002) J Am Chem Soc 124:4495–4503

    Article  CAS  Google Scholar 

  55. Baik MH, Friesner RA, Lippard SJ (2003) J Am Chem Soc 125:14082–14092

    Article  CAS  Google Scholar 

  56. Eriksson LA, Raber J, Zhu C (2005) J Phys Chem 109:11006–11015

    Google Scholar 

  57. Chval Z, Šíp M (2003) Collect Czechoslov Chem Commun 68:1105–1118

    Article  CAS  Google Scholar 

  58. Burda JV, Leszczynski J (2003) Inorg Chem 42:7162–7172

    Article  CAS  Google Scholar 

  59. Burda JV, Šponer J, Hrabáková J, Zeizinger M, Leszczynski J (2003) J Phys Chem B 107:5349–5356

    Article  CAS  Google Scholar 

  60. Zeizinger M, Burda JV, Leszczynski J (2004) Phys Chem Chem Phys 6:3585–3590

    Article  CAS  Google Scholar 

  61. Deubel DV (2002) J Am Chem Soc 124:5834–5842

    Article  CAS  Google Scholar 

  62. Burda JV, Zeizinger M, Šponer J, Leszczynski J (2000) J Chem Phys 113:2224–2232

    Article  CAS  Google Scholar 

  63. Zeizinger M, Burda JV, Šponer J, Kapsa V, Leszczynski J (2001) J Phys Chem A 105:8086–8092

    Article  CAS  Google Scholar 

  64. Burda JV, Zeizinger M, Leszczynski J (2004) J Chem Phys 120:1253–1262

    Article  CAS  Google Scholar 

  65. Burda JV, Zeizinger M, Leszczynski J (2005) J Comput Chem 26:907–914

    Article  CAS  Google Scholar 

  66. Zimmermann T, Zeizinger M, Burda JV (2005) J Inorg Biochem 99:2184–2196

    Article  CAS  Google Scholar 

  67. Andrae D, Haussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  68. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  69. Reed AE, Weinhold F (1983) J Chem Phys 78:4066–4073

    Article  CAS  Google Scholar 

  70. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  71. Weinhold F (2001) University of Wisconsin, Madison, Wisconsin 53706, Wisconsin

Download references

Ackowledgments

This study was supported by Charles University grant 438/2004/B_CH/MFF, grant NSF-MŠMT ČR 1P05 ME-784, and grant MSM 0021620835. Computational resources from Meta-Centers in Prague, Brno, and Pilsen are acknowledged for access to their excellent supercomputer facilities. Finally, special thanks must be given to the KFCHO department computer cluster administrated by Dr. M. Šimánek.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav V. Burda.

Additional information

Proceedings of “Modeling Interactions in Biomolecules II”, Prague, September 5th–9th, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavelka, M., Burda, J.V. Pt-bridges in various single-strand and double-helix DNA sequences. DFT and MP2 study of the cisplatin coordination with guanine, adenine, and cytosine. J Mol Model 13, 367–379 (2007). https://doi.org/10.1007/s00894-006-0151-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-006-0151-x

Keywords

Navigation