Skip to main content
Log in

Comparative analysis of different competitive antagonists interaction with NR2A and NR2B subunits of N-methyl-D-aspartate (NMDA) ionotropic glutamate receptor

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The antagonist-bound conformation of the NR2A and NR2B subunits of N-methyl-D-aspartate (NMDA) ionotropic glutamate receptor are modeled using the crystal structure of the DCKA (5,7-dichloro-kynurenic acid)-bound form of the NR1 subunit ligand-binding core (S1S2). Five different competitive NMDA receptor antagonists [(1) DL-AP5; (2) DL-AP7; (3) CGP-37847; (4) CGP 39551; (5) (RS)-CPP] have been docked into both NR2A and NR2B subunits. Experimental studies report NR2A and NR2B subunits having dissimilar interactions and affinities towards the antagonists. However, the molecular mechanism of this difference remains unexplored. The distinctive features in the antagonist’s interaction with these two different but closely related (~80% sequence identity at this region) subunits are analyzed from the patterns of their hydrogen bonding. The regions directly involved in the antagonist binding have been classified into seven different interaction sites. Two conserved hydrophilic pockets located at both the S1 and S2 domains are found to be crucial for antagonist binding. The positively charged (Lys) residues present at the second interaction site and the invariant residue (Arg) located at the fourth interaction site are seen to influence ligand binding. The geometry of the binding pockets of NR2A and NR2B subunits have been determined from the distance between the C-α atoms in the residues interacting with the ligands. The binding pockets are found to be different for NR2A and NR2B. There are gross dissimilarities in competitive antagonist binding between these two subunits. The binding pocket geometry identified in this study may have the potential for future development of selective antagonists for the NR2A or NR2B subunit.

Figure The figure shows the interactions of Drug-E with the NR2A subunit of the NMDA receptor. The amino acids shown here are within 4Å radius of drug. Hydrogen bonds between the drug and receptor are marked in green dotted lines. Drugs are rendered in cpk (ball and stick) and amino acids are shown in blue color (lines).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McBain CJ, Mayer ML (1994) Physiol Rev 74:723–760

    PubMed  CAS  Google Scholar 

  2. Collingridge GL, Bliss TV (1995) Trends Neurosci 18:54–56

    Article  PubMed  CAS  Google Scholar 

  3. Choi DW, Koh JY, Peters SJ (1988) J Neurosci 8:185–196

    PubMed  CAS  Google Scholar 

  4. Nakanishi S (1992) Science 258:597–603

    Article  PubMed  CAS  Google Scholar 

  5. Hollmann M, Maron C, Heinemann S (1994) Neuron 13:1331–1343

    Article  PubMed  CAS  Google Scholar 

  6. Rigby M, Le Bourdelles B, Heavens RP, Kelly S, Smith D, Butler A, Hammans R, Hills R, Xuereb JH, Hill RG, Whiting PJ, Sirinathsinghji DJ (1996) Neuroscience 73:429–447

    Article  PubMed  CAS  Google Scholar 

  7. Wenzel A, Fritschy JM, Mohler H, Benke D (1997) J Neurochem 68:469–478

    Article  PubMed  CAS  Google Scholar 

  8. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Neuron 12:529–540

    Article  PubMed  CAS  Google Scholar 

  9. Laube B, Kuhse J, Betz H (1998) J Neurosci 18:2954–2961

    PubMed  CAS  Google Scholar 

  10. Benveniste M, Mayer ML (1991) Br J Pharmacol 104:207–221

    PubMed  CAS  Google Scholar 

  11. Clements JD, Westbrook GL (1991) Neuron 7:605–613

    Article  PubMed  CAS  Google Scholar 

  12. Hirai H, Kirsch J, Laube B, Betz H, Kuhse J (1996) Proc Natl Acad Sci USA 93:6031–6036

    Article  PubMed  CAS  Google Scholar 

  13. Laube B, Hirai H, Sturgess M, Betz H, Kuhse J (1997) Neuron 18:493–503

    Article  PubMed  CAS  Google Scholar 

  14. Anson LC, Chen PE, Wyllie DJ, Colquhoun D, Schoepfer R (1998) J Neurosci 18:581–589

    PubMed  CAS  Google Scholar 

  15. Hawkins LM, Chazot PL, Stephenson FA (1999) J Biol Chem 274:272–118

    Google Scholar 

  16. Chazot PL (2000) Curr Opin Investig Drugs 1:370–374

    PubMed  CAS  Google Scholar 

  17. Chenard BL, Menniti FS (1999) Curr Pharm Des 5:381–404

    PubMed  CAS  Google Scholar 

  18. Priestley T, Laughton P, Macaulay AJ, Hill RG, Kemp JA (1996) Neuropharmacology 35:1573–1581

    Article  PubMed  CAS  Google Scholar 

  19. Priestley T, Laughton P, Myers J, Le Bourdelles B, Kerby J, Whiting PJ (1995) Mol Pharmacol 48:841–848

    PubMed  CAS  Google Scholar 

  20. Buller AL, Monaghan DT (1997) Eur J Pharmacol 320:87–94

    Article  PubMed  CAS  Google Scholar 

  21. Feng B, Tse HW, Skifter DA, Morley R, Jane DE, Monaghan DT (2004) Br J Pharmacol 141:508–516

    Article  PubMed  CAS  Google Scholar 

  22. Monaghan DT, Olverman HJ, Nguyen L, Watkins JC, Cotman CW (1988) Proc Natl Acad Sci USA 85:9836–9840

    Article  PubMed  CAS  Google Scholar 

  23. Ortwine DF, Malone TC, Bigge CF, Drummond JT, Humblet C, Johnson G, Pinter GW (1992) J Med Chem 35:1345–1370

    Article  PubMed  CAS  Google Scholar 

  24. Stern-Bach Y, Bettler B, Hartley M, Sheppard PO, O’Hara PJ, Heinemann SF (1994) Neuron 13:1345–1357

    Article  PubMed  CAS  Google Scholar 

  25. Armstrong N, Gouaux E (2000) Neuron 28:165–181

    Article  PubMed  CAS  Google Scholar 

  26. Furukawa H, Gouaux E (2003 ) EMBO J 22:2873–2885

    Article  PubMed  CAS  Google Scholar 

  27. Oh BH, Pandit J, Kang CH, Nikaido K, Gokcen S, Ames GF, Kim SH (1993) J Biol Chem 268:11348–11355

    PubMed  CAS  Google Scholar 

  28. Jin R, Banke TG, Mayer ML, Traynelis SF, Gouaux E (2003) Nat Neurosci 6:803–810

    Article  PubMed  CAS  Google Scholar 

  29. Chohan KK, Wo ZG, Oswald RE (2000) J Mol Mod 6:16–25

    Article  CAS  Google Scholar 

  30. Tikhonova IG, Baskin II, Palyulin VA, Zefirov NS, Bachurin SO (2002) J Med Chem 45:3836–3843

    Article  PubMed  CAS  Google Scholar 

  31. Foucaud B, Laube B, Schemm R, Kreimeyer A, Goeldner M, Betz H (2003) J Biol Chem 278:24011–24017

    Article  PubMed  CAS  Google Scholar 

  32. Laube B, Schemm R, Betz H (2004) Neuropharmacology 47:994–1007

    Article  PubMed  CAS  Google Scholar 

  33. Sanchez R, Sali A (1997) Curr Opin Struct Biol 2:206–214

    Article  Google Scholar 

  34. Bi H, Sze CI (2002) J Neurol Sci 200:11–18

    Article  PubMed  CAS  Google Scholar 

  35. Leeson PD, Carling RW, Moore KW, Moseley AM, Smith JD, Stevenson G, Chan T, Baker R, Foster AC, Grimwood S (1992) J Med Chem 35:1954–1968

    Article  PubMed  CAS  Google Scholar 

  36. Woodward RM, Huettner JE, Guastella J, Keana JF, Weber E (1995) Mol Pharmacol 47:568–581

    PubMed  CAS  Google Scholar 

  37. Christie JM, Jane DE, Monaghan DT (2000) J Pharmacol Exp Ther 292:1169–1174

    PubMed  CAS  Google Scholar 

  38. Buller AL, Larson HC, Schneider BE, Beaton JA, Morrisett RA, Monaghan DT (1994) J Neurosci 14:5471–5484

    PubMed  CAS  Google Scholar 

  39. Grimwood S, Gilbert E, Ragan CI, Hutson PH (1996) J Neurochem 66:2589–2595

    PubMed  CAS  Google Scholar 

  40. Kendrick SJ, Lynch DR, Pritchett DB (1996) J Neurochem 67:608–616

    Article  PubMed  CAS  Google Scholar 

  41. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  42. Rost B, Sander C, Rost B, Sander C (1993) J Mol Biol 232:584–599

    Article  PubMed  CAS  Google Scholar 

  43. Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  44. Sali A, Blundell TL (1993) J Mol Biol 234:779–815

    Article  PubMed  CAS  Google Scholar 

  45. Luthy R, Bowie JU, Eisenberg D (1992) Nature 356:83–85

    Article  PubMed  CAS  Google Scholar 

  46. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystal 26:283–291

    Article  CAS  Google Scholar 

  47. All tools utilized herein were accessed and utilized as implemented in InsightII-97.5, Accelrys (www.accelrys.com)

  48. Kleywegt GJ, Jones TA (1997) Methods in Enzymology 277:525–545

    CAS  Google Scholar 

  49. Bohm HJ (1992) J Comput Aided Mol Des 6:593–606

    Article  PubMed  CAS  Google Scholar 

  50. Bohm HJ (1994) J Comput Aided Mol Des 3:243–256

    Article  Google Scholar 

  51. Blaise M, Sowdhamini R, Rao MRP, Pradhan N (2004) J Mol Model (in press)

  52. Evans RH, Francis AA, Jones AW, Smith DA, Watkins JC (1982) Br J Pharmacol 75:65–75

    PubMed  CAS  Google Scholar 

  53. Laurie DJ, Seeburg PH (1994) Eur J Pharmacol 268:335–345

    Article  PubMed  CAS  Google Scholar 

  54. Pang A, Arinaminpathy Y, Sansom MS, Biggin PC (2003) FEBS Lett 550:168–174

    Article  PubMed  CAS  Google Scholar 

  55. Arinaminpathy Y, Sansom MS, Biggin PC (2002) Biophys J 82:676–683

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the assistance of Mr. R. Rajagopal in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nithyananda Pradhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blaise, MC., Sowdhamini, R. & Pradhan, N. Comparative analysis of different competitive antagonists interaction with NR2A and NR2B subunits of N-methyl-D-aspartate (NMDA) ionotropic glutamate receptor. J Mol Model 11, 489–502 (2005). https://doi.org/10.1007/s00894-005-0258-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0258-5

Keywords

Navigation