Skip to main content

Advertisement

Log in

Immunohistochemical analysis of various serum proteins in living mouse thymus with “in vivo cryotechnique”

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

It has been difficult to clarify the precise localizations of soluble serum proteins in thymic tissues of living animals with conventional immersion- or perfusion-fixation followed by alcohol dehydration owing to ischemia and anoxia. In this study, “in vivo cryotechnique” (IVCT) followed by freeze-substitution fixation was performed to examine the thymic structures of living mice and immunolocalizations of intrinsic or extrinsic serum proteins, which were albumin, immunoglobulin G1 (IgG1), IgA, and IgM, as well as intravenously injected bovine serum albumin (BSA). Mouse albumin was more clearly immunolocalized in blood vessels and interstitial matrices of the thymic cortex than in tissues prepared by the conventional methods. The immunoreactivities of albumin and IgG1 were stronger than those of IgA and IgM in the interstitium of subcapsular cortex. The injected BSA was time-dependently immunolocalized in blood vessels and the interstitium of corticomedullary areas at 3.5 h after its injection, and then gradually diffused into the interstitium of the whole cortex at 6 h and 12 h. Thus, IVCT revealed definite immunolocalizations of serum albumin and IgG1 in the interstitium of thymus of living mice, indicating different accessibility of serum proteins from the corticomedullary areas, not from the subcapsular cortex of living animals, depending on various molecular sizes and concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lind EF, Prockop SE, Porritt HE, Petrie HT (2001) Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J Exp Med 194:127–134

    Article  PubMed  CAS  Google Scholar 

  2. Pearse G (2006) Normal structure, function and histology of the thymus. Toxicol Pathol 34:504–514

    Article  PubMed  Google Scholar 

  3. Ladi E, Yin X, Chtanova T, Robey EA (2006) Thymic microenvironments for T cell differentiation and selection. Nat Immunol 7:338–343

    Article  PubMed  CAS  Google Scholar 

  4. Raviola E, Karnovsky MJ (1972) Evidence for a blood-thymus barrier using electron-opaque tracers. J Exp Med 136:466–498

    Article  PubMed  CAS  Google Scholar 

  5. Sainte-Marie G (1963) Antigen penetration into the thymus. J Immunol 91:840–845

    PubMed  CAS  Google Scholar 

  6. Kouvalainen K, Gitlin D (1967) Passage of antigens across the vascular barrier of the thymus. Nature (Lond) 214:592–593

    Article  CAS  Google Scholar 

  7. Ito T, Hoshino T (1966) Light and electron microscopic observations on the vascular pattern of the thymus of the mouse. Arch Histol Jpn 27:351–361

    Article  PubMed  CAS  Google Scholar 

  8. Henry L, Durrant TE, Anderson G (1992) Pericapillary collagen in the human thymus: implications for the concept of the ‘blood-thymus’ barrier. J Anat 181:39–46

    PubMed  CAS  Google Scholar 

  9. Hopwood D (1969) Fixatives and fixation: a review. Histochem J 1:323–360

    Article  PubMed  CAS  Google Scholar 

  10. Mason DY, Biberfeld P (1980) Technical aspects of lymphoma immunohistology. J Histochem Cytochem 28:731–745

    Article  PubMed  CAS  Google Scholar 

  11. Hopwood D (1985) Cell and tissue fixation, 1972–1982. Histochem J 17:389–442

    Article  PubMed  CAS  Google Scholar 

  12. Ohno S, Terada N, Fujii Y, Ueda H, Takayama I (1996) Dynamic structure of glomerular capillary loop as revealed by an in vivo cryotechnique. Virchows Arch 427:519–527

    Article  PubMed  CAS  Google Scholar 

  13. Ohno N, Terada N, Bai Y, Saitoh S, Nakazawa T, Nakamura N, Naito I, Katoh R, Ohno S (2008) Application of cryobiopsy to morphological and immunohistochemical analyses of xenografted human lung cancer tissues and functional blood vessels. Cancer (Phila) 113:1068–1079

    Article  Google Scholar 

  14. Bai Y, Ohno N, Terada N, Saitoh S, Nakazawa T, Nakamura N, Katoh R, Ohno S (2009) Immunolocalization of serum proteins in xenografted mouse model of human tumor cells by various cryotechniques. Histol Histopathol 24:717–728

    PubMed  CAS  Google Scholar 

  15. Terada N, Ohno N, Li Z, Fujii Y, Baba T, Ohno S (2006) Application of in vivo cryotechnique to the examination of cells and tissues in living animal organs. Histol Histopathol 21:265–272

    PubMed  CAS  Google Scholar 

  16. Ohno N, Terada N, Ohno S (2006) Histochemical analyses of living mouse liver under different hemodynamic conditions by “in vivo cryotechnique.” Histochem Cell Biol 126:389–398

    Article  PubMed  CAS  Google Scholar 

  17. Saitoh S, Terada N, Ohno N, Ohno S (2008) Distribution of immunoglobulin-producing cells in immunized mouse spleens revealed with “in vivo cryotechnique.” J Immunol Methods 29:114–126

    Article  Google Scholar 

  18. Shimo S, Saitoh S, Terada N, Ohno N, Saitoh Y, Ohno S (2010) Immunohistochemical detection of soluble immunoglobulins in living mouse small intestines using an in vivo cryotechnique. J Immunol Methods 361:64–74

    Article  PubMed  CAS  Google Scholar 

  19. Zhou H, Ohno N, Terada N, Saitoh S, Fujii Y, Ohno S (2007) Involvement of follicular basement membrane and vascular endothelium in blood-follicle barrier formation of mice revealed by ‘in vivo cryotechnique’. Reproduction 134:307–317

    Article  PubMed  CAS  Google Scholar 

  20. Mason DY, Bell JI, Christensson B, Biberfeld P (1980) An immunohistological study of human lymphoma. Clin Exp Immunol 40:235–248

    PubMed  CAS  Google Scholar 

  21. Leu FJ, Chen CF, Sun AM (1993) A new method of tissue processing that causes no shrinkage or distortion. Lab Invest 69:121–130

    PubMed  CAS  Google Scholar 

  22. Chan FL, Inoue S (1994) Lamina lucida of basement membrane: an artefact. Microsc Res Tech 28:48–59

    Article  PubMed  CAS  Google Scholar 

  23. Shiurba R (2001) Freeze-substitution: origins and applications. Int Rev Cytol 206:45–96

    Article  PubMed  CAS  Google Scholar 

  24. Schuurman HJ, Hu HZ, de Weger RA, Clevers HC (1993) Thoughts on the thymus and the T-lymphocyte repertoire. Relevance to the tolerance of the immune response. Neth J Med 43:38–54

    CAS  Google Scholar 

  25. Zea-Aragón Z, Terada N, Ohno N, Fujii Y, Baba T, Ohno S (2004) Effects of anoxia on serum immunoglobulin and albumin leakage through blood-brain barrier in mouse cerebellum as revealed by cryotechniques. J Neurosci Methods 138:89–95

    Article  PubMed  Google Scholar 

  26. Henry L, Anderson G (1990) Immunoglobulins in Hassall’s corpuscles of the human thymus. J Anat 168:185–197

    PubMed  CAS  Google Scholar 

  27. Weiss L (1963) Electron microscopic observations on the vascular barrier in the cortex of the thymus of the mouse. Anat Rec 145:413–437

    Article  PubMed  CAS  Google Scholar 

  28. Abe K, Ito T (1974) Vascular permeability in the thymus of the mouse. Arch Histol Jpn 36:251–264

    Article  PubMed  CAS  Google Scholar 

  29. Kato S (1997) Thymic microvascular system. Microsc Res Tech 38:287–299

    Article  PubMed  CAS  Google Scholar 

  30. Mentlein R, Kendall MD (2000) The brain and thymus have much in common: a functional analysis of their microenvironments. Immunol Today 21:133–140

    Article  PubMed  CAS  Google Scholar 

  31. Bubanovic IV (2003) Failure of blood-thymus barrier as a mechanism of tumor and trophoblast escape. Med Hypotheses 60:315–320

    Article  PubMed  CAS  Google Scholar 

  32. Bai Y, Ohno N, Terada N, Saitoh S, Nakazawa T, Nakamura N, Katoh R, Ohno S (2011) Differential distribution of blood-derived proteins in xenografted human adenocarcinoma tissues by in vivo cryotechnique and cryobiopsy. Med Mol Morphol 44:93–102

    Article  PubMed  CAS  Google Scholar 

  33. Kendall MD (1991) Functional anatomy of the thymic microenvironment. J Anat 177:1–29

    PubMed  CAS  Google Scholar 

  34. Macedo MF, de Sousa M, Ned RM, Mascarenhas C, Andrews NC, Correia-Neves M (2004) Transferrin is required for early T-cell differentiation. Immunology 112:543–549

    Article  PubMed  CAS  Google Scholar 

  35. Roberts RL, Sandra A (1994) Transport of transferrin across the blood-thymus barrier in young rats. Tissue Cell 26:757–766

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Ohno.

Additional information

Dr. Y. Bai was a research fellow from the Department of Pathology, Faculty of Medicine, Chifeng University, Inner Mongolia 024000, China, while this work was in progress at the University of Yamanashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, Y., Wu, B., Terada, N. et al. Immunohistochemical analysis of various serum proteins in living mouse thymus with “in vivo cryotechnique”. Med Mol Morphol 45, 129–139 (2012). https://doi.org/10.1007/s00795-011-0549-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-011-0549-0

Key words

Navigation