Skip to main content

Advertisement

Log in

Cryptic dispersal of Cyanidiophytina (Rhodophyta) in non-acidic environments from Turkey

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Cyanidiophytina are a group of polyextremophilic red algae with a worldwide, but discontinuous colonization. They are restricted to widely dispersed hot springs, geothermal habitats, and also some human-altered environments. Cyanidiophytina are predominant where pH is prohibitive for the majority of eukaryotes (pH 0.5–3). Turkey is characterized by areas rich in volcanic activity separated by non-volcanic areas. Here we show that Cyanidiophycean populations are present in thermal baths located around Turkey on neutral/alkaline soils. All known genera and species within Cyanidiophytina were detected in Turkey, including Galdieria phlegrea, recorded up to now only in Italian Phlegrean Fields. By phylogenetic analyses, Turkish G. sulphuraria strains are monophyletic with Italian and Icelandic strains, and with Russian G. daedala strains. G. maxima from Turkey clustered with Icelandic, Kamchatka, and Japanese populations. The discovery of Cyanidiophytina in non-acidic Turkish soils raises new questions about the ecological boundaries of these extremophilic algae. This aids in the understanding of the dispersal abilities and distribution patterns of this ecologically and evolutionarily interesting group of algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albertano P, Ciniglia C, Pinto G, Pollio A (2000) The taxonomic position of Cyanidium, Cyanidioschyzon and Galdieria: an update. Hydrobiologia 433:137–143

    Article  Google Scholar 

  • Allen MM, Stanier RY (1968) Selective isolation of blue-green algae from water and soil. J Gen Microbiol 51:203–209

    Article  PubMed  CAS  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Azúa-Bustos A, González-Silva C, Mancilla RA, Salas L, Palma RE, Wynne JJ, McKay CP, Vicuña R (2009) Ancient photosynthetic eukaryote biofilms in an Atacama Desert coastal cave. Microb Ecol 58:485–496

    Article  PubMed  Google Scholar 

  • Brock TD (1978) The genus Cyanidium. In: Starr PM (ed) Thermophilic microorganisms and life at high temperatures. Springer, New York, pp 255–301

    Chapter  Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68

    Article  PubMed  CAS  Google Scholar 

  • Cennamo P, Ciniglia C (2017) The algal diversity in the Phlegrean Fields (Campania, Italy) archeological districts. UPLanD 2(2):97–106

    Google Scholar 

  • Cennamo P, Marzano C, Ciniglia C, Pinto G, Cappelletti P, Caputo P, Pollio A (2012) A survey of the algal flora of anthropogenic caves of Campi Flegrei (Naples, Italy) archeological district. J Cave Karst Stud 74(3):243–250

    Article  Google Scholar 

  • Ciniglia C, Yoon HS, Pollio A, Pinto G, Bhattacharya D (2004) Hidden biodiversity of the extremophilic Cyanidiales red algae. Mol Ecol 13:1827–1838

    Article  PubMed  CAS  Google Scholar 

  • Ciniglia C, Yang EC, Pollio A, Pinto G, Iovinella M, Vitale L, Yoon HS (2014) Cyanidiophyceae in Iceland: plastid rbcL gene elucidates origin and dispersal of extremophilic Galdieria sulphuraria and G. maxima (Galderiaceae, Rhodophyta). Phycologia 53(6):542–551

    Article  CAS  Google Scholar 

  • Ciniglia C, Pinto G, Pollio A (2017) Cyanidium from caves: a reinstatement of Cyanidium chilense Schwabe (Cyanidiophytina, Rhodophyta). Phytotaxa 295(1):86–88

    Article  Google Scholar 

  • Darienko T, Hoffmann L (2010) Subaerial algae and cyanobacteria from the archaeological remains of Carthage (Tunisia), including the record of a species of Cyanidium (Rhodophyta). Algol Stud 135(1):41–60

    Article  Google Scholar 

  • Del Rosal Y, Jurado V, Roldán M, Hernández Mariné M, Sáiz-Jiménez C (2015) Cyanidium sp. colonizadora de cuevas turísticas. In: Moreno Oliva M, Rogerio-Candelera MA, López Navarrete JT, Jolín VH (eds) Estudio y Conservación del Patrimonio Cultural. Actas, Universidad de Málaga, Malaga, pp 170–173

    Google Scholar 

  • Doemel WN, Brock TD (1971) The physiological ecology of Cyanidium caldarium. J Gen Microbiol 67:17–32

    Article  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10(3):564–567

    Article  Google Scholar 

  • Friedmann I (1964) Progress in the biological exploration of caves and subterranean waters in Israel. Int J Speleol 1:29–33

    Article  Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gross W (1999) Revision of comparative traits for the acid- and thermophilic red algae Cyanidium and Galdieria. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer Academic Publisher, London, pp 439–446

    Google Scholar 

  • Gross W, Oesterhelt C, Tischendorf G, Lederer F (2002) Characterization of a non-thermophilic strain of the red algal genus Galdieria isolated from Soos (Czech Republic). Eur J Phycol 37(3):477–482

    Article  Google Scholar 

  • Hoffman L (1994) Cyanidium-like algae from caves. In: Seckbach J (ed) Evolutionary pathways and enigmatic algae: Cyanidium caldarium (Rhodophyta) and related cells. Kluwer, Dordrecht, pp 175–182

    Chapter  Google Scholar 

  • Hsieh CJ, Zhan SH, Lin Y, Tang SL, Liu SL (2015) Analysis of rbcL sequences reveals the global biodiversity, community structure, and biogeographical pattern of thermoacidophilic red algae (Cyanidiales). J Phycol 51(4):682–694

    Article  PubMed  Google Scholar 

  • Leclerc JC, Couté A, Dupuy P (1983) Le climat annuel de deux grottes et d’une eglise du Poitou, ou vivent des colonies pures d’algues sciaphiles. Cryptogam Algol 4(1–2):1–19

    Google Scholar 

  • Librado P, Rozas J (2009) DNASp v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Lowell C, Castenholtz RW (2013) The lowering of external pH in confined environments by thermo-acidophilic algae (class: cyanidiophyceae). Environ Microbiol Rep 5(5):680–684

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, pp 287–326

    Google Scholar 

  • Papke RT, Niels B, Ramsing NB, Bateson MM, Ward DM (2003) Geographical isolation in hot spring cyanobacteria. Environ Microbiol 5(8):650–659

    Article  PubMed  CAS  Google Scholar 

  • Pearce JA, Bender JF, De Long SE, Kidd WSF, Low PJ, Guner F, Saroglu Y, Yilmaz Y, Moorbath S, Mitchell JG (1990) Genesis of collision volcanism in Eastern Anatolia, Turkey. J Volcanol Geotherm Res 44:189–229

    Article  Google Scholar 

  • Pinto G (1993) Acid-tolerant and acidophilic algae from Italian environments. Plant Byosis 127:400–406

    Google Scholar 

  • Pinto G, Albertano P, Ciniglia C, Cozzolino S, Pollio A, Yoon HS, Battacharya D (2003) Comparative approaches to the taxonomy of genus Galdieria Merola (Cyanidiales) Rhodophyta. Cryptogam Algol 24(1):13–22

    Google Scholar 

  • Pinto G, Ciniglia C, Cascone C, Pollio A (2007) Species composition of Cyanidiales assemblages in Pisciarelli (Campi Flegrei, Italy) and description of Galdieria phlegrea sp.nov. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 489–502

    Google Scholar 

  • Qiu H, Price DC, Weber APM, Reeb V, Yang EC, Lee JM, Kim SY, Yoon HS, Bhattacharya D (2013) Adaptation through horizontal gene transfer in the cryptoendolithic red alga Galdieria phlegrea. Curr Biol 23(19):865–866

    Article  CAS  Google Scholar 

  • Ramette AN, Tiedje JM (2007) Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. PNAS 104(8):2761–2766

    Article  PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Schwabe GH (1936) Über einige Blaualgen aus dem mittleren und südlichen Chile. Verhandlungen des Deutschen Wissenschaftlichen Vereins zu Santiago de Chile 3:113–174

    Google Scholar 

  • Schwabe GH (1942) Über das thermalbad Kusatu. Mitteilungen Der Deutschen. Gesellschaft for Natur- und Völlkerkunde Ostasiens. Otto Harrassowitz, Tokyo, Leipzig, Band XXIII(Teil C):C41–C42

    Google Scholar 

  • Skorupa DJ, Reeb V, Castenholz RW, Bhattacharya D, McDermott TR (2013) Cyanidiales diversity in Yellowstone National Park. Lett Appl Microbiol 57:459–466

    Article  PubMed  CAS  Google Scholar 

  • Skuja H (1970) Alghe cavernicole nelle zone illuminate delle Grotte di Castellana (Murge di Bari). Le Grotte d’Italia 4:193–202

    Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 75(5):758–771

    Article  Google Scholar 

  • Tajima F (1983) Evolutionary Relationship of DNA sequences in finite populations. Genetics 105(2):437–460

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595

    PubMed  PubMed Central  CAS  Google Scholar 

  • Toplin JA, Norris TB, Lehr CR, McDermott TR, Castenholz RW (2008) Biogeographic and phylogenetic diversity of thermoacidophilic Cyanidiales in Yellowstone National Park, Japan, and New Zealand. Appl Environ Microbiol 74:2822–2833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Sci Rep 301(5635):976–978

    CAS  Google Scholar 

  • Yang EC, Boo SM, Bhattacharya D, Saunders GW, Knoll AH, Fredericq S, Graf L, Yoon HS (2016) Divergence time estimates and the evolution of major lineages in the florideophyte red algae. Sci Rep 6:21361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Ciniglia C, Wu M, Cameron JM, Pinto G, Pollio A, Bhattacharya D (2006) Establishment of endolithic population of extremophilic Cyanidiales (Rhodophyta). BMC Evol Biol 6:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo G, Xu Z, Hao B (2015) Phylogeny and taxonomy of Archaea: a comparison of the whole-genome-based CVTree approach with 16S rRNA sequence analysis. Life (Basel) 5:949–968

    CAS  Google Scholar 

Download references

Acknowledgements

We are especially grateful to Dr. Nurullah Akcan for his help in the exploration of the thermal areas around Turkey. We also thank Dr. Rachael Oakenfull for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

AE: conduction of experiments, analysis of results, contribution to draft writings; MI: conduction of experiments, analysis of results, contribution to draft writings; SJD analysis of results, contribution to draft writings; DC: isolation of strains, conduction of experiments; GP and AP: original concept, provision of resources; CC: original concept, provision of resources, draft editing.

Corresponding author

Correspondence to Claudia Ciniglia.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Communicated by A. Oren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

792_2018_1031_MOESM1_ESM.pdf

Supplementary material 1 (PDF 49 kb) Fig. S1. Map of Turkey. Names indicate the sampling sites from where Cyanidiophytina were isolated

Supplementary material 2 (PDF 163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iovinella, M., Eren, A., Pinto, G. et al. Cryptic dispersal of Cyanidiophytina (Rhodophyta) in non-acidic environments from Turkey. Extremophiles 22, 713–723 (2018). https://doi.org/10.1007/s00792-018-1031-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-018-1031-x

Keywords

Navigation